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Abstract: General sign language recognition models are only designed for recognizing categories, i.e., such 
models do not discriminate standard and nonstandard sign language actions made by learners. It is inadequate 
to use in sign language education software. To address this issue, this paper proposed a sign language category 
and standardization correctness discrimination model for sign language education. The proposed model is 
implemented with a hand detection and standard sign language discrimination method. For hand detection, the 
proposed method utilizes flow-guided features and acquires relevant proposals using stable and flow key frame 
detections. This model can resolve the inconsistency between the forward optical flow and the box center point 
offset. In addition, the proposed method employs an encoder-decoder model structure for sign language 
correctness discrimination. The encoder model combines 3D convolution and 2D deformable convolution 
results with residual structures, and it implements a sequence attention mechanism. A Sign Language 
Correctness Discrimination dataset (SLCD dataset) was also constructed in this study. In this dataset, each 
sign language video has two recognition labels, i.e., sign language category and standardization category. The 
semi-supervised learning method was employed to generate pseudo hand position labels. The hand detection 
model was getting sufficiently high hand detection result. The sign language correctness discrimination model 
was tested with hand patches or full images. SLCD dataset is available at https://dx.doi.org/10.21227/p9sn-
dz70. 
 
Keywords: Continuous sign language recognition, encoder-decoder, tubelet, video object detection, 3D 
convolution. 

 
INTRODUCTION 

Compared to gesture recognition, the sign language recognition task is more complex and diverse. 
Sign language translation based on sign language recognition [1], [2] facil- itates communication between 
the hearing impaired and those with functional hearing. Sign language recognition also promotes the 
intelligence of human-machine interaction in sign language education [3]. Previously, teaching sign 
language primarily relied on manual techniques and video content. However, with manual techniques, the 
availability ofThe associate editor coordinating the review of this manuscript and approving it for 
publication was Muhammad Sharif. A demonstration is limited due to manpower issues. In addi- tion, 
video teaching does not provide efficient and effective feedback about incorrect sign language actions. Thus, 
there is an urgent need for sign language teaching software that utilize a deep learning method to identify the 
correctness of the signs made by sign language students. 

 
Computer vision methods with image and video information are commonly used for sign language 

recognition. Sign language recognition based on computer vision primar- ily involves two problems, i.e., 
the isolated sign language recognition and continuous sign language recognition tasks. Isolated sign 
language recognition can recognize a single sign language category. For example, Wang et al. [4] employed 

https://dx.doi.org/10.21227/p9sn-dz70
https://dx.doi.org/10.21227/p9sn-dz70
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FIGURE 1.  

Overall structure of the proposed hand detection and continuous sign language correctness 
discrimination model. The improved Faster RCNN is employed for hand detection in key frames, and the Flow-
guided Feature with stable and flow boxes for proposals hand detection network with tubelet forward optical flow 
refine model (FGSFP+TFFR) is employed for hand detection in non-key frames. The deformable convolution and 
sequence attention three-dimensional residual network encoder with gate recurrent unit decoder model 
(DCSR3D+GRU) is employed for comprehensive correctness discrimination of continuous sign language 

actions.(2 + 1)D convolution for isolated sign language recogni- tion, and Venugopalan and 
Reghunadhan [1] employed GoogleNet [5] and Bidirectional Long Short-term Memory(BiLSTM) 
for isolated sign language recognition. In con- tinuous sign language recognition, feature 
extraction is typically conducted for video frames, and then the hand features are processed by 
time-series methods. Continuous sign language recognition can recognize several complex sign 
language actions in the corresponding video data. 
 

 For example, Min et al. [6] employed 2D and 1D convolution feature extraction and utilized BiLSTM 
and Connection- ist Temporal Classification Loss (CTC Loss) and proposed Visual Alignment Constraint 
(VAC) for continuous sign lan- guage recognition. Furthermore, Pu et al. [7] employed 3D convolution and 
CTC Loss for continuous sign language recognition. In addition, Papastratis et al. [8] used a Con- 
volutional Neural Network (CNN) to extract features, and they used text embeddings and a Sequence To 
Sequence (seq2seq) structure for continuous sign language recog- nition. Xiao et al. [9] employed the Faster 
Regions with CNN Features (Faster RCNN) [10] to detect the hand in video frames. Here, they fused 
CNN-extracted features of the detected hand patches and body information, and employed the 
Spatiotemporal Long Short-term Memory (ST-LSTM) seq2seq structure for continuous sign language 
recognition. 

 
This study focuses on the category and standardization comprehensive correctness discrimination of 

sign language actions made by students. As shown in Fig. 1, a hand detection, and continuous sign 
language correctness dis- crimination model is proposed. The general sign language recognition method 
attempts to identify the sign language category; however, there is no standardization discrimi- nation for 
actions of the same sign language category. The primary contributions of this study are summarized as 
follows. 

 
A SLCD dataset is constructed. All the demonstrators are making Chinese sign languages. Here, 

each sign language video has two types of labels, i.e., sign language category, and standardization 
categorysimultaneously. Semi-supervised learning is used to make pseudo hand position labels of the 
video frames. 

 
The proposed FGSFP+TFFR implements a video hand detection model with tubelet that can detect up to 

two handsin each frame. The model accelerates the network using flow-guided features. Here, proposals 
are obtained by stable and flow key frame detections, which effectively reduces the number of proposals. In 
addition, the model can refine the forward optical flow to obtain center point offset refine map for 
improved accuracy. The model reduces computa- tional costs while getting sufficiently high hand 
detection result. 

 
The proposed DCSR3D encoder combines 3D convolution and 2D deformable convolution results with 

residual struc- tures and implements a sequence attention mechanism. The design of DCSR3D model 
effectively enhances the extraction of spatiotemporal features. The input to the GRU decoder is the 
concatenation of the corresponding text embedding and encoder features. This allows the model to 
discrim- inate the relationship between sign language video made by students and the corresponding 
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learning text obtained from the sign language learning software. The final output is the category and 
standardization comprehensive correct- ness discrimination result. The model was tested on the SLCD 
dataset with hand patches and full images, leading to obtaining good discrimination results compared to 
the other models. 
 

RELATED WORK 
3D CONVOLUTION 

Video data contain a large number of frames, and there is a strong relation between adjacent 
frames. In terms of video recognition, many methods have been proposed to accelerate the network or 
improve recognition accuracy. Dif- fering from a general CNN, the 3D Convolutional Neural Networks 
(3DCNN) [11] was proposed for feature synthesisof video frame sequences. In addition, improved 3DCNN 
structures have been proposed. For example, 3D Residual Convolutional Neural Network (R3D) [12] applied 
the Resid- ual Network (ResNet) [13] structure to 3D convolution. 2D Spatial Convolution Followed By 
1D Temporal Convo-lution (R(2 + 1)D) [14] utilized 2D and 1D convolution to achieve the effect of 3D 
convolution, which could real-ize better results with the same number of parameters. Deformable 3D 
Convolution (D3D) [15] implemented a learnable bias to the sampling position of the 3D convolu- tion to 
achieve 3D deformable convolution, and Quantized Tensor Train Neural Networks (QTTNet) [16] 
employed the Tensor Train (TT) format [17] to improve 3D convolution, which greatly reduced the time 
costs and number of param- eters required for 3D convolution networks. In addition, Cao [18] employed 
3D depth-wise separable convolution to recognize video gestures, and Zhu et al. [19] employed a 
pyramid 3D convolution network architecture for gesture recognition. 

 
      TUBELET FOR VIDEO OBJECT DETECTION 

The tubelet method uses the detection results of adjacent frames to improve object detection in the 
current frame. For example, Kang et al. [20] utilized tubelet proposal net- works to detect video objects. 
Their method created proposals with tubelets across adjacent video frames. However, their method 
approach became excellent only when it caught objects with small movement in the frame scope. In addi- 
tion, Tang et al. [21] utilized cubic proposals to detect small tubelets, which were then connected according 
to the box Intersection Over Union (IOU) in the same frame, and they used the tubelets to update the 
classification score. The method proposed by Feichtenhofer et al. [22] predicted the offset based on the 
detection results of the previous frame, and the adjusted boxes were compared with the detection results of 
the current frame. The Tubelets with Convolutional Neural Networks (T-CNN) method [23] utilized an 
optical flow to flow the detection results of the adjacent frame and combined the flow boxes with the 
proposals for the current frame. This method flowed boxes with the average value of the optical flow 
inside the detection area, which was rather inferior and with rough prediction. 
 

 The method proposed by Zhang et al. [24] employed an optical flow to flow the detec- tion results of 
the previous frame to the current frame. Here, the previous frame detection results were used to crop the 
optical flow image, and the cropped flow images were used as the input to the neural network to obtain the 
offset of each target. These tubelet methods have been shown to increase video detection accuracy; however, 
they also involved a large number of proposals for hand detection, which increased computational costs. In 
contrast, the proposed hand detection model with tubelet in this paper only obtains proposals by stable and 
flow key frame detections. The model utilizes the optical flow and heat maps of key frame detections to 
generate center point offset refine maps, generating more accurate flow proposals. 

 
SPARSE PROPOSALS 

Many object detection methods are based on candidate boxes, which often cover targets by setting a 
large number of candidate boxes. Such as Region Proposal Network (RPN) was designed in Faster RCNN 
to select and regress anchor boxes, and Single Shot MultiBox Detector (SSD) [25] preseted a large number 
of multi-scale candidate boxes. A large number of candidate boxes set in the former or other normal 
methods are unnecessary. Therefore, design- ing sparse and effective candidate boxes will greatly reduce 
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network computation and running time. Iterative Grid Based Object Detector (G-CNN) [26] used sparse 
preset candi- date boxes for detection, which required extra detection iteration to make the prediction 
boxes close to the tar- get position. DEtection TRansformer (DETR) [27] was an object detection method 
using Transformer [28], which pro- posed a fixed number of 100 candidate boxes in each image and output 
the detection results through the decoder. This was actually setting sparse candidate boxes in the image. 
DeNoising DETR (DN-DETR) [29] designed a denoising training method to enhance the stability of 
candidate boxes matching with real targets during DETR training. Sparse RCNN [30] directly set sparse 
proposals in the detection model and designed a cascade decoder for detection. In Dual Attention Sparse R-
CNN [31], the dual attention module was applied to each cascade stage to improve detection accuracy.  

 
Different from the constant candidate boxes in previous work, Dynamic Sparse R-CNN [32] used 

Dynamic Proposal Generation (DPG) to generate dynamic sparse candidate boxes. It can be seen that when 
reducing the number of preset candidate boxes, enhance the target cov- erage of the candidate boxes or 
iterative box refine can perform better in the detection results. This paper reduces the number of proposals 
to a very small extent for hand detection in the sign language videos, and considers both fast and slow 
hand movements to ensure the hand target coverage. 

 
 

Figure 2. Structure of the proposed video hand detection model. The improved Faster RCNN+FPN is used 
in key frames, and FGSFP+TFFR is used in non-key frames.PROPOSED METHODS 

The proposed hand detection and continuous sign language correctness discrimination model is 
shown in Fig. 1. The proposed method is to detect the hands first and then send the cropped hand 
patches to the following correctness discrimination model. Video hand detection model is dis- cussed in 
Section. A, DCSR3D model encoder is discussed in Section. B. 
 
VIDEO HAND DETECTION MODEL 

The proposed FGSFP+TFFR model structure used in non key frames and improved Faster 
RCNN+FPN used in key frame are shown in Fig. 2. The improved Faster RCNN+FPN is discussed in 
Section I), FGSFP+TFFR is discussed in section II). In Section II), FGSFP+TFFR is separately discussed by 
a. Optical flow prediction, b. TFFR module,c. Proposals of stable and flow key frame detections, d. Hand 
detection and post-processing. 
 
IMPROVED FASTER RCNN+FPN NETWORK IN KEY FRAMES 

The proposed improved Faster RCNN + Feature Pyramid Networks (FPN) [33] model enlarges the 
FPN C3, C4, and C5 layer features to the size of the C2 layer for addition. It issimilar to the Libra R-CNN 
[34] but does not separate the features after addition. Here, the feature map P is computed as shown in 
Equation (1).Here, the interpolation algorithm uses the nearest interpolation algorithm, Wu1, Wu2, and Wu3 
represent the resampling operation, and W is a 1 × 1 convo- lution kernel weight matrix.P = W (C2 + Wu1(C3) 
+ Wu2(C4) + Wu3(C5)) (1)As shown in Fig. 2, the proposed improved Faster RCNN+FPN method is used for 
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the initialization detection of left and right hands in the key frames. Here, the first frame, and frames at 
every step of nk where both hands exist aretaken as the key frames. Note that frames with only a single 
hand or without hands are not considered a key frame. In such cases, take the next frame as a candidate key 
frame until two hands are detected in the frame. 
 
FGSFP+TFFR VIDEO HAND DETECTION NETWORK IN NON-KEY FRAMES 

As shown in Fig. 2, the proposed FGSFP+TFFR is designed to detect hands in non-key frames. This 
method utilizes flow-guided features to obtain non-key frame prediction fea-tures. The stable and flow 
boxes of the key frame hand detections are used to obtain the proposals. The main steps are as follows: 
 
OPTICAL FLOW PREDICTION 

In the proposed method, Optical Flow with Convolutional Networks Simple (FlowNetS) [35] is 
employed for optical flow prediction, and the input is the current non-key frame image and key frame 
image. The backward and forwardoptical flows are obtained simultaneously. The two branches of the 
predicted optical flow are as follows. 

 
The backward optical flow and scale map are gener- ated. These are used to sample and scale the 

feature Pk of the key frame and obtain the flow-guided feature. Fflow is the feature maps to predict optical 
flow prop- agated from FlowNetS, it is concatenated with the flow-guided feature to increase the detection 

result. The prediction feature of the current frame Pt is computedas shown in Equation (2), where Wc is a 
3 × 3 convolu- tion kernel weight matrix, W is the mapping operationbased on the backward 
optical flow, FB represents the generation of the backward optical flow, S is the scale generation, Ik 
is the key frame image, and It is the current non-key frame image. 

 
Pt = [Fflow, Wc ∗ W (Pk , FB(Ik , It ), S(Ik , It ))]   (2) 

The forward optical flow is generated. The obtained forward optical flow is first sent to the TFFR 
module for refine and used to shift the hand center point posi- tion of the key frame detection Dk . The details 
of TFFR module are shown in section b and that of flowing key frame detection are shown in section c. The 
flow boxes are used as part of the proposals in the current non- key frame. Note that the size of the flow 
boxes is not changed. 
 
TFFR MODULE 

The boxes can be directly transformed by the forward optical flow or using the average optical flow 
value as the pre- viously proposed method [23]. However, direct utilization of the forward optical flow 
does not yield sufficient accu- racy. Due to the inconsistency between the forward optical flow and the key 
frame hand detection center point posi- tions, the original forward optical flow cannot perfectly shift the 
box center points. Here, the hand positions detected in the key frame may have a certain deviation, and 
the FlowNetS method only estimates the optical flow based on the actual image of the two frames. In 
addition, the char- acteristics of the optical flow prediction will lead to worse results, e.g., the optical flow 
will have obvious edges, and incorrect hand center positions may have large differences. In addition, 
prediction of the optical flow itself may not be completely accurate. Thus, it is necessary to refine the 
forward optical flow map to obtain the center point offset refine map. 

 
The TFFR module is proposed to obtain the center point offset refine map, which can be used to shift 

the key frame hand detections more accurately. Fig. 3 shows the network structure of the proposed TFFR 
module. The TFFR module adopts a layer-by-layer refine structure, which exploits the advantage of the 
optical flow refine method in Optical Flow with Convolutional Networks (FlowNet) [35] structure. The 
input to the proposed TFFR module is the concatenation of forward optical flow and the hand detection Dk 
center point 
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FIGURE 3. Network structure of TFFR module.heat maps HkL and HkR. Here, the number of input 
channels is four, and the module comprises four TFFR blocks. Finally,coordinates of the flow 
proposal center point, respectively, FF is the forward optical flow, Ik is the key frame image, and 
It is the current non-key frame image. Here, xck , and yck represent the x and y coordinates of the 
key frame detectioncenter point, respectively. R is the down-sampling ratio of the forward optical 
flow graph. In the proposed model, R = 4. The measure between the optical flow prediction and 
the detections is not the same; thus, the value of the center point offset refine map must be 
multiplied R times. In addition,when sampling the offsets with the center point coordinate value 
of Dk , the center point coordinate must be reduced R times. Here, xdim and ydim represent the 
channels correspond- ing to the x and y offsets in the center point offset refine map,respectively.the 
center point offset refine map is obtained after the final convolution layer.xc = xck + R · TFFR(FF (Ik , It 

))(xck/R,yck/R,xdim) 

 
The TFFR block is calculated as shown in Equation (3), where Fi is the input of the ith block, and Fi+1 

is the output feature. Fi+1 is also taken as the input to the next block. Fri is the representation feature. Ws and 
Wr are 3 × 3 convolution weights, and bn_relu represents the normalization and Recti-fied Linear Unit 
(ReLu) activation layers. In each block, the input feature of ni channels first passes through Wr to obtain the 
representation feature Fri of k channels. Then, the con- catenation feature of Fri and Fi, are going through 
bn_relu,Ws, and bn_relu layers to obtain the output of ni+k channels. Note that parameter k represents the 
increased feature number of each TFFR block (k = 4 in this paper).Fi+1 = bn_relu(Wsi(bn_relu([Fri, Fi]))) (3) 
Here, Fri is expressed as follows.Fri = Wri(Fi)(4)The heat maps HkL and HkR are obtained by a Gaus- sian 
function centered on the center point of the key frame detection. The heat map generation method used in 
the proposed method follows that utilized in CenterNet [36]. Equation (5) is used to obtain the pixel value 
near the center point of the detection box in the heat map after Gaussianprocessing. In Equation (5), p˜ is 
the coordinate of the detec- tions, R is the down-sampling ratio, x and y are the pixel positions relative to 
the center point, and σp is the adap-tive standard deviation obtained according to the detection size.(x − 
p̃ x ) 2  + (y − ̃p y ) 2 yc = yck + R · TFFR(FF (Ik , It ))(xck /R,yck /R,ydim) (7)As shown in Equation (8), in addition to the 

flow proposals, the stable key frame detections are selected as the proposals in the non-key frame. In 
summary, there is a total of four proposals in the non-key frames. Note that this considers both fast and slow 
moving targets comprehensively.Bt = [Dk , BF ] (8)Here, BF is calculated as follows.BF = WB(Dk , FF (Ik , It ))
 (9)The proposals of non-key frame are obtained by the stable and flow key frame detections; thus, the 
non-key frame detec- tion network does not utilize RPN and reduce computational costs. The method will 
also reduce the computation cost of the neural network for the Region Of Interest (ROI) fea- tures and the 
post-processing operation for the final detection results. 
 
HAND DETECTION AND POST-PROCESSING 

The ROI features are extracted according to the propos- als. The features go through two fully-
connected layers to obtain the category and the regression value. The detec- tion results of the network are 
subjected to the following post-processing operations to obtain final left and right hand detection results. 
First, we retain the left and right hand largest category confidence predictions because only one student is 
making sign language in each video, and there is at most one effective detection area for the left and 
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p 

right hands.Yxyc = exp(− 
 

Y ∈ [0, 1] (5) 

 Then, the detections whose category prediction confidence value is less than 
0.05 are removed to exclude backgroundHere, p˜ is calculated as follows. 

p 
p̃ = [ 

R 
] (6) 

c: PROPOSALS OF STABLE AND FLOW KEY FRAME DETECTIONS 
The flowing key frame center point coordinates are calculated as shown in Equation (7), where xc, and yc are 
the x and yarea. 
 

DCSR3D 
The DCSR3D model is designed with 3D convolution and 2D deformable convolution. It is based the 

R3D resid- ual structure and added sequence attention mechanism. In this Section, the 2D deformable 
convolution is discussed in Section I), DCSR3D residual block structure is dis- cussed in Section II). 

 

 
 
FIGURE 4. Structure of DCSR3D residual block structure, which combines 3D convolution, and 2D deformable 

convolution. The final result is obtained by the four-path convolution result, and a sequence attention mechanism 
is implemented. (a) general convolution residual block of DCSR3D; (b) convolution residual block of DCSR3D in 
down-sampling. 
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DEFORMABLE CONVOLUTION 
The deformable convolution method proposed by Dai et al. [37] uses a neural network to 

predict the sampling position of the convolution kernel to achieve convolution of different shapes. Here, the 
sampling position differs for each point in the feature map such that the network can select more useful 
features in the current feature map. Equation (10) shows the computation of a feature point y(p0). 

y(p0) = 
X 

w(pn) · x(p0 + pn + ∆pn) (10) 
pn∈R 

Here, p0 is the feature point position, pn is the offset of the sampling point in the regular convolution 
kernel, and ∆pn is the predicted offset of the deformable convolution at each sampling point. In addition, 
w(pn) represents the weight of the corresponding position of the convolution kernel and x represents the 
feature map. In Equation (11), the value sam- pled in x is calculated according to the bilinear interpolation 
algorithm. 

x(p) = 
X 

G(q, p) · x(q) (11) 
q 

Here, p is the location of the sampling point, q is the spatial location listed around p, and G is the kernel of 
the bilinear interpolation algorithm. As shown in (12), G comprises two dimensions: 

G(q, p) = g(qx, px) · g(qy, py) (12) 
where 

g(a, b) = max(0, 1 − |a − b|) (13) 
 

DCSR3D RESIDUAL BLOCK 

The structure of DCSR3D residual block is shown in Fig. 4. The DCSR3D combines 3D convolution 
and 2D deformable convolution, which enhances the feature extraction of the current sequence position. 
The DCSR3D model is based on the basic block of two-layer convolution residual struc- ture from R3D 
and ResNet. The output feature is obtained from the four-path convolution feature maps. As shown in 
Equation (14), Fri is the input feature of the residual block andfc is the 1 × 1 × 1 3D convolution to synthesis 
four-path fea- tures and to obtain the interval feature Frt .  

 
The first path of thefour-path convolution adds 2D deformable convolution layer fd 1 between the two 

3D convolution layers fc1 and fc2, and the second path is used to concatenate the features of the 3D and 2D 
deformable convolutions fc3 and fd 2 before the second 3D convolution fc4. The third path concatenates the 
fea- tures of the 3D and 2D deformable convolutions fc3 and fd 2 before the second 2D deformable 
convolution fd 3. Finally, the fourth path takes the 2D deformable convolution fd 4 so that the input can 
directly pass through it. The number channels of each path is reduced to one-half of the original number 
(with the exception of the first path, which remains unchanged). 

Frt = fc([fc2(fd1(fc1(Fri))), 
× fc4([fc3(Fri), fd2(Fri)]), 
× fd3([fc3(Fri), fd2(Fri)]), 

× fd4(Fri), ]) (14) 
 
The interval feature Frt of DCSR3D block is input to the sequence attention layer. The 

sequence attentionmechanism in the proposed method is based on the attention methods employed in the 
Squeeze-and-excitation Networks (SE Net) [38] and Convolutional Block Attention Module (CBAM) [39] 
methods. As shown in Equation (15), the sequence attention mechanism first uses Average (Avg) and 
Maximum (Max) operations on the last two dimensions of the feature map Frt . The dimensions of the 
attention interval feature map Mt change to (N , S, C, 2). Then it will flatten feature Mt from the second 
dimension, causing dimensionchange to (N , (S × C × 2)). As shown in Equation (16), Mt is then sent through 
two fully-connected layer: LN1 and LN2. Finally, the sigmoid function σ is used to obtain the atten-tion 
value Mattn. Note that the channel and the sequence dimension are flattened together; thus, rather than 
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being calculated for each sequence, the attention mechanism ulti- mately reflects the more fine-grained 
sequence attention. 

Mt = [AvgPool2d(Frt ),MaxPool2d(Frt )] (15) Mattn = σ (LN2(LN (M ))) (16) 
batch size was set to four, and the network was trained over 30 epochs. Here, the learning rate was 
multiplied by 0.1 every ten epochs. 
 

The evaluation metric used to assess the FGSFP+TFFR hand detection network was the Mean 
Average Preci-sion (mAP), which represents the detection accuracy of all categories. The result was 
calculated with coco mAP eval- uation method of IOU value 0.5 (mAP50) and IOU value 
between 0.5 and 0.95 with step of 0.05 (mAP50-95). The evaluation metric used to assess the DCSR3D+GRU 
network for sign language discrimination is Accuracy (Acc.), where it is directly called discrimination 
accuracy in the following content. 
 
IMPLEMENTATION DETAILS 
HAND DETECTION NETWORK 

ResNet50 [13] was used as the backbone network for feature extraction in the key frames. The input 

size of the images1 t was 3 × 224 × 320. In addition, in the proposed improvedAs shown in 
Equation (17), the attention value Mattn will affect the interval feature Frtas the residual value applied to 
feature Fri. As shown in Fig.4, (b) two 1 × 1 × 1 3D convolution layers fs1 and fs2 are added to adapt the 
featuremap with the output size. The whole input and output sizes of DCSR3D residual block are the same 
as the corresponding R3D and ResNet structure. DCSR3D-Bx only uses block number instead of layer 
number to name.Fro = Fri + Frt · Mattn (17) In the sign language recognition task, there are typically many 
unnecessary motions. For correctness discriminationtask, gesture errors in a few frames may affect the 
correct- ness discrimination of the overall sign language action. Also, same mistakes in the frames are 
convert and occupy a small area. Thus, the attention mechanism is conducive to selecting useful 
spatiotemporal features in the discrimination task of this study. 
 
EXPERIMENT 

The experiment was implemented using Pytorch, and two GeForce RTX 2080Ti GPU were used for 
training. In addi- tion, Stochastic Gradient Descent (SGD) optimization was adopted for model training. 
The proposed continuous sign language correctness discrimination model was trained and tested on the 
SLCD dataset. More information about the SLCD dataset and hand detection and sign language correct- 
ness discrimination results are presented in this Section. 

 
PARAMETERS 

The initial learning rate of the DCSR3D+GRU sign language correctness discrimination model on the 
SLCD dataset wasset to 0.005. The batch size was set to four. The model was trained over 21 epochs, and 
the learning rate was multiplied by 0.33 every four epochs.The initial learning rate of the FGSFP+TFFR 
hand detec- tion network on the SLCD dataset was set to 0.001, theFaster RCNN+FPN, the number 
channels of FPN output feature maps at each layer was 256. The number of channelsof feature map P for 
ROI pooling was 512 for both key and non-key frames. The size of each extracted ROI was 5 × 5. The ROI 
features went through two fully-connected layers. The layer dimension number of the two fully-connected 
lay- ers was 512. Note that the fully-connected layers were notidentical for the key frames and non-key 
frames. When train- ing the FGSFP+TFFR model, two frames were randomly selected with step 10 
continuous frames for each video. Proposals of IOU greater than 0.01 with ground truth boxeswere 
regarded as positive samples. All videos in the sign language correctness discrimination training dataset 
were trained for each epoch. The key frames were sampled every 10 frames for testing. FlowNetS used the 
pretraining weightstrained on the Flying Chairs dataset [35]. FGSFP+TFFR hand detection network in non-
key frame was fine-tuned with 
key frame pretrained improved Faster RCNN model. The pretrained weights of the key frame detection 
network were using the model weights of semi-supervised learning gen- eration 0 when generating the 
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pseudo hand position labels. 
 

As shown in formula (18), FGSFP+TFFR used Smooth L1 Loss LDS 1for the specific point in the 
center point offsetrefine map, used traditional Faster RCNN Cross Entropy Loss LDC and Smooth L1 Loss LDS 
2 in the final classification and regression prediction process. 

LD = λ1LDS1 + λ2LDC + λ3LDS2 (18) 
 
DCSR3D+GRU 

Two types of inputs were used in this experiment: hand patch and full image inputs. The input size 
of the full imagewas 3 × 112 × 160 (channel, height and width, respectively) and that of the hand patches was 
6 × 32 × 32 (channel, height, and width, respectively), i.e., the concatenation ofthe left and right hand 
patches. When training and test- ing the proposed model, 30 frames were selected from the 

 
 

Figure 5. Examples of standardization labels of the sign language videos in the SLCD dataset (representative 
frames are displayed).beginning to the end of each video with the same step. The DCSR3D-B8 model was 
trained on the SLCD dataset. Note that the DCSR3D-B8 model had the same number of block, input 
channels, and output channels as the ResNet18 model. The DCSR3D-B8 encoder output 1,280 dimensions. 
the sign languages discriminated in this study included a total of 95 Chinese characters, and one additional 
character was added to represent Chinese characters not realized in this study. The 96 characters were 
embedded to 32 dimensions and were sent through two fully-connected layers to output 500 dimensions. 
Here, dropout of 0.3 was added to the text embedding results to prevent overfitting. As shown in Fig. 1., the 
image encoding features of DCSR3D and text embedding features were concatenated as the input of GRU 
decoder. The input dimension of the GRU decoder was set to 1,780, and the output and hidden state 
dimensions were set to 1,280. The GRU decoder output was sent through the fully-connected layer to obtain 
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two output units, i.e., the correct and incorrectclassifications. The Cross Entropy Loss LChand was used to 
train the DCSR3D+GRU model. 
 
 SLCD DATASET 

An SLCD dataset was collected to facilitate sign language education. Each video included two 
types of recognitionlabels, i.e., the sign language category label and the stan- dardization category label. 
The standardization category label discriminated standardization for actions of the same sign language 
category. In contrast, general sign language datasets only had standard sign language actions and they could 
only make models to classify similar sign language actions to the same category ignoring minor defects. 
Each image also included pseudo hand position labels generated bythe improved Faster RCNN+FPN 
semi-supervised learning method. The videos in the SLCD dataset were obtainedusing individual 
cameras. In the data collection process, 76 students were recruited to record sign language videos. Each 
student performed the same sign language multiple times to ensure sufficient diversity in the dataset. 
There were 52 Chinese isolate sign languages, and 27 Chinese continuous sign languages. We acquired a 
total of 20,792 sign language videos. Every second frame of each video was saved as an image, and a total of 
1,054,598 images were acquired. The training and testing sets were formed at a ratio of 9:1. 
 
CORRECTNESS DISCRIMINATION LABELS 

In addition to sign language category labels usually contained in the general sign language datasets, 
each sign languagevideo was signed with a standardization label. If the sign language video 
standardization label was standardized, the action was the corresponding sign language action, and the 
sign language action in the video was considered standard. In this evaluation, incorrect finger positions, 
incorrect hand movements, or lack of necessary body movements were con- sidered nonstandard actions. As 
shown in Fig. 5, (a) and (b),(c) and (d), (e) and (f), and (g) and (h) show sign language gestures for ‗‗job,‘‘ 
‗‗go,‘‘ ‗‗like,‘‘ and ‗‗contact,‘‘ respectively, where (a), (c), (e), and (g) show standard examples, whereas (b), (d), 
(f), and (h) show nonstandard examples. The nonstan- dard parts are described as follows: (b): the thumbs 
are held up in frames 3 and 6; (d): in frames 3 and 4, the hand should reach out vertically (not horizontally); 
(f): in frames 3, 4, 5, and 6, the head should nod slightly rather than pinching two fingers twice; (h): in 
frames 3 and 4, the middle, ring, and little finger of the left hand should be clenched rather than half open. 

 
Note that the original data standardization label only contained correctness correspondence between 

the sign lan- guage videos and corresponding category texts. In this study, the data were doubled to add 
correctness correspondence between the sign language videos and other category texts. These additional 
videos were all signed incorrect for the standardization label. The total number of videos used for training 
and testing for sign language correctness discrimi- nation was 41,584 

 
HAND POSITION LABELS WITH IMPROVED FASTER RCNN+FPN SEMI-SUPERVISED LEARNING 

The improved Faster RCNN+FPN semi-supervised learningmethod was used to generate pseudo 
hand position labelsfor the video frames. Here, 2,077 representative images were annotated manually with 
ground truth position labels using the LabelImg software. Among the annotated images, 158 images were 
selected from the Chinese Sign Language Recognition Dataset [40] to prevent data overfitting. 
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Figure 6. Percentage of remaining images in the improved Faster RCNN+FPN semi-supervised learning 

process corresponding to each generation, where 289 images were manually labeled in the100th generation.In 
this evaluation, the improved Faster RCNN+FPN was first trained using the ground truth 
position labels for100 epochs. Here, the initial learning rate was set to 0.01, which was multiplied 
by 0.33 at the thirtieth and sixtieth epochs. Note that the mAP value of these trained images with 
an IOU value of 0.5 was 98.9%. Second, the improvedFaster RCNN+FPN was used to detect 
the hand area of the stored images. The detection results of both hands withconfidence greater 
than 98% or less than 2% (i.e., no corre- sponding target) were added to the pseudo position 
labels. Third, a total of 300 generations was performed to gener- ate pseudo position labels. Each 
generation training process contained three epoch training, and then the latest trained model 
weights were used to generate the pseudo position labels of the unlabeled images. Each 
generation was trained with 10,000 randomly selected images with pseudo hand position labels 
and all the images with the annotated ground truth position labels. The percentage of remaining 
images in each generation is shown in Fig. 6. As the remaining unlabeled image percentage 
declined hardly from approx- imately the 80th generation, 289 images were manually labeled and 
added to the training process of each gener- ation from the 100th generation to accelerate the 
labeling process. 

 
HAND DETECTION RESULTS 
Comparison With Different Detection Models 

The FGSFP+TFFR model was compared with some other detection models on SLCD dataset, 
i.e., tradi- tional object detection models: Faster RCNN+FPN, SSD; video object detection methods: RDN 
[41], MEGA [42];video object detection models with flow guided feature: DFF [43], FGFA [44]; detection 
models with sparse propos- als: Sparse R-CNN, DETR, Anchor DETR [45], DN-DETR.Most of the models 
used ResNet50 backbone in the detection or the key frame detection. FGSFP+TFFR key frame detec- tion 
model was using pretrained weights of labeled model generation 0. The labeled model generation 0 is the 
improvedFaster RCNN+FPN model after 100 epochs training with the ground truth position labels. 

 
Table 1 is the mAP detection results comparison of dif- ferent models. It can be seen traditional 

object detection methods and the video object detection methods had similar mAP detection results. Where 
RDN achieved highest mAP50 detection results of 99.2% compared to other detection meth- ods. The results 
with DETR method structure had achieved higher mAP50-95 detection results. Sparse R-CNN with cas- 
cade decoder achieved highest mAP 50-95 detection result of 84.6% compared to other detection methods.  

 
The detectionresult of FGSFP+TFFR designed in this paper was 78.9% for mAP50-95 and 99.0% for 

mAP50. FGSFP+TFFR model had achieved the ideal result compared to other methods.The result shows 
that acquiring proposals via stable and flow key frame detections is effective. The result also shows the 
forward optical flow to flow boxes is adaptive to flow guided feature structure. FGSFP achieved detection 
result of 77.1%or mAP50-95 and 98.0% for mAP50. It was slightly lower than FGSFP with TFFR module. 
This shows the effectiveness of TFFR module design. 
 

Detection models were tested with the running time. It can be seen MEGA and RDN got the 
lowest FPS, for they concentrated more on accuracy but not speed. SSD detection methods with one-stage 
structure got higher speed compared to other methods. DFF and FGFA were usingFlowNetS to 
generate optical flow, it can be seen DFF got little higher speed than Faster RCNN+FPN. DETR got FPS 
31.9, Anchor DETR got FPS 22.9. Because Sparse R-CNN and DN-DETR were trained on WSL2 system, 
their model running speed were not shown in Table 1. Fromtheir original research experiment we can 
know the run- ning speed of DN-DETR is a little higher than DETR and Sparse R-CNN is a little lower than 
DETR. FGSFP+TFFR got FPS of 61.4, FGSFP got FPS of 62.1. TFFR mod- ule caused little FPS decline 
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but got remarkable detection result increased. FGSFP+TFFR was also tested with differ- ent FlowNetS 
scale. FlowNet scale 1/2 and 1/4 remained the original FlowNetS structure but used less convolution kernels 
in each layer. It can be seen FlowNetS from scale 1 to 1/4 got speed increased and with acceptable 
detection result decreased. FGSFP+TFFR with FlowNetS of scale 1/4 got the highest FPS of 77.5. 
 
ABLATION STUDY 

Table 2 compares the mAP50-95 results of different FGSFP+TFFR model structures and training 
strategies with the full weights FlowNetS. It can be seen for eachpaired TFFR result comparisons, add 
TFFR module would definitely increase the detection result. This is because TFFR adds key frame detection 
information and solves inconsis-ency between the forward optical flow and the key frame detection center 
point positions. For FGSFP+TFFR and FGSFP model results, add Fflow would increase the detection results. 
Although flow guided feature can be used to detect objects in the non key frames, Fflow also has abundant 
featureinformation and is helpful to detect object in the non key frames. 

 
 When fine-tuned the non key frame detection models, it would not change the key frame model 

weights. For the labeled model generation 0 detection result was relatively high and non key frame model 
highly relays on the key frame detections, results with fine-tune training method would get higher 
detection results. LD1 was added to supervise center point offset refine map to generate more useful 
proposals, for some of the proposal deviate too much would not be selectin the ROI process when 
training. It can be seen LD1 would definitely increase the detection results for FGSFP+TFFR and FGSFP 
model. 
 
SIGN LANGUAGE CORRECTNESS DISCRIMINATION RESULTS 
COMPARISON WITH DIFFERENT ENCODER MODELS 

Table 3 compares the correctness discrimination results of different encoder models. As can be seen, 
the discrimina- tion result obtained using the DCSR3D-B8 encoder with hand patches was 81.647%, and the 
discrimination result obtained using full image input was 73.868%, respectively representing the best 
results. The proposed method was able to obtain this level of performance because it implements 
deformable convolution to better synthesize the featuresof the current sequence. In addition, the 
proposed method implements the sequence attention mechanism to select more useful sequence features. 
As can be seen, the discrimi- nation accuracy of C3D was the lowest, which indicates that the direct feature 
fusion technique cannot obtain good results on the target dataset. The discrimination results of R3D were 
73.507% for full image and 79.624% for hand patches accuracies, which were good compared to the other 
methods; however, as demonstrated by Hara et al. [12] in their experiments, this method did not 
perform well on the Kinetics dataset [33]. It is found that R3D structure synthesizes features while checks 
out sign language action failures from the specific sequence position with short cut path more easily on the 
sign language discrimination dataset. The results obtained by combining general 2D and 1D convo-lutions in 
R(2+1)D discrimination results provided 70.857% for full image and 78.348% for hand patches 
accuracies,which were not as good as the results obtained by the proposed model. In addition, the 
proposed method outper- formed the Temporal Segment Networks (TSN) [34] and Temporal Shift Module 
(TSM) [35] models, which focus on 2D convolution with discrimination results 70.713% and 70.689 for full 
image accuracy and 77.553 and 77.697 for hand patches accuracy. In the experimental dataset described in 
this paper, the discrimination results obtained by dif- ferent encoders exhibited large differences. Note that 
the discrimination results obtained using the full image input and hand patch input also exhibited large 
differences. These results indicate that the complexity of the SLCD dataset is high. 
 
ABLATION STUDY 

An ablation experiment was conducted, and Table 4 shows the experimental results for the DCSR3D-
B8 model. Note that these displayed results were obtained using hand patches. Table 4 also shows results 
obtained with and without adding the sequence attention mechanism to the final output fea- ture of each 
block. The 2D deformable convolution feature concatenation indicates whether to add the convolution fea- 
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ture results of paths 2, 3, and 4 in the DCSR3D block. As can be seen, the DCSR3D-B8 model with the 
sequence attention mechanism and 2D deformable convolution feature concatenation obtained the highest 
discrimination result. The discrimination results of other structures that reduce the com- ponents are not as 
effective as the proposed DCSR3D-B8 model structure. 

 
CONCLUSION 

Sign language education software requires correctness dis- crimination not only for different sign 
language categories, but also for sign language standardization of the same sign language category. The 
students can practice specific sign language actions using the sign language discrimination method 
realized in this study in a sign language education software until students can perform perfectly. 

 
In this study, an SLCD dataset, which includes sign lan- guage category and standardization 

category labels, was collected. In addition, the improved Faster RCNN+FPN semi-supervised learning 
method was employed to make pseudo left and right hand position labels. 

 
The proposed detection method was evaluated experi- mentally, the FGSFP+TFFR was fine-tuned 

with pretrained key frame detection model. The FGSFP+TFFR method got sufficiently high detection 
result while reducing computa-tional costs using flow-guided features and fewer proposals. The proposed 
method uses TFFR to obtain accurate flow proposals. The proposed detection method is specifically 
designed for one or two hand detections in the target video data. 

 
In addition, the DCSR3D+GRU model was designed to realize comprehensive correctness 

discrimination ofthe sign language category and standardization. The pro- posed DCSR3D model 
performs better in feature synthe- sis of spatiotemporal, for it implements the fine-grained sequence 
attention mechanism and with the full use of 2D deformable convolution. The combination of 3D convolu- 
tion and 2D deformable convolution enriches the interval feature. R3D was found to be better suited for 
rec- ognizing mistakes compared to the general recognition task. 
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