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Abstract: In the contemporary logistics and transportation infrastructure, dynamic optimization of truck routes is the 
key to achieving the highest efficiency, the reduction of costs, and ensuring timely delivery. Dynamic Vehicle Routing 
Problem (DVRP) reflects real-life uncertainties such as stochastic travel time, dynamic customer demands and changing 
availability of vehicles. In this paper, a detailed literature review of machine learning-based methods of dynamic route 

optimization in truck transportation systems. It surveys the unification of dissimilar data streams such as GPS positions, 
road surveillance systems, meteorological applications and Fleet management applications and highlights the 
significance of data preprocessing in a dependable model execution. Classical machine learning models like Support 
Vector Machines and Logistic Regression are presented and also advanced deep learning models like Long Short-Term 
Memory and Gated Recurrent Unit networks are discussed that are effective in capturing intricate spatiotemporal traffic 
behavior. The adaptive real-time decision-making is also discussed through reinforcement learning techniques namely 
Deep Q-Networks and policy-gradient approaches. According to the comparison performance results reported in recent 
works, deep learning-based routing frameworks can minimize average delivery time by more than 20%, increase on-
time delivery rates by an average of 17% points, and reduce fuel consumption by up to 13% in comparison with 
traditional DVRP approaches. The survey also ends with the identification of the existing challenges and future research 

areas in terms of intelligent, scalable, and sustainable truck route optimization systems. Such results show how the ML-
based approaches can be used to facilitate smart, scalable, and sustainable optimization of truck routes. 

Keywords: Dynamic Vehicle Routing, Trucking Logistics, Machine Learning (ML), Route Optimization, Autonomous 
Trucks, Big Data Analytics, Transportation Efficiency. 

I. INTRODUCTION 
The route planning is one of the most essential elements of the intelligent transportation system and has been extensively 

used in different areas such as daily travel and transportation to reduce costs, time and managerial expenses [1]. Road transport 
makes a crucial part of a network of global supply chains and the possibility that the transshipment of the good and the services 
can be performed in extremely long distances [2]. Nevertheless, a number of problems are associated with this means of 
transportation, including traffic congestions, probability of accidents and delays in optimization. Such problems are especially 
paramount in dynamic environments, like humanitarian logistics, where human lives are at stake because of timely and effective 

reaction. Insufficient up-to-date information on the road condition, road traffic conditions, and safety threats is one of the factors 
that worsen the situation of giving the logistics planners a guarantee to make informed decisions. Such overstretched road 
systems are not only causing traffic jam, but also fuel wastage which is worsening the environment. Accidents and crimes are 
some of the safety threats to the human being and the safety of the goods [3]. The issue of transport route optimisation is 
complicated by expenses, travel duration, traffic congestion, and safety hazards. 

The optimization of international transportation systems is a burning topic that influences different industries, such as 
trade, humanitarian, and logistics [4]. There is the increasing need of an effective mode of transportation that is operationally 
and strategically demanding as the world turns into a global village. The process of transport optimization should include such 
factors as route planning, cost-efficiency, fuel consumption, and the unpredictability of the events that result in it e.g. natural 
calamities or political unrest. Late arrival of the humanitarian missions may also be a drastic incident because it can harm the 
personnel. It has to have a multi-criteria strategy that takes into account the latest technologies, including AI and machine 

learning, to optimize the paths and run with real-time data. 

The AI and ML have become a strong tool to address the transport route optimization issues. Big data can be analyzed 
with the help of these technologies and new trends revealed which otherwise could not have been observed without technologies 
[5]. The aspect helps in saving on the time spent on traveling, using less fuel and it also reduces emissions and develops more 
sustainable transportation systems [6]. The machine learning issue may be a highly effective tool to address this problem 
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because it is based on data-driven algorithms to optimize the load planning process, routing and demand prediction. The 
machine learning (ML) group has created a successful way of loading a truck. The different ML methods are able to handle large 
volumes of real-time data, and make informed decisions in real-time. The models are also able to forecast demand, dynamically 
divide space in trucks as well as optimizing routes depending on a number of conditions [7]. 

This survey addresses the opportunities of machine learning to transform truck loads optimization of retail logistics, 
outlines the new trends and discusses the obstacles that should be overcome to entirely realize the opportunities of these modern 

technologies. These gaps are the basis of the study as the research is going to offer an understanding of how logistics systems 
will evolve in the future under the impact of ML. 

A. Organization of the Paper 
The paper is structured in the following fashion: Section I presents the study, Section II describes the dynamic route 

optimization in trucking, Section III introduces machine learning-based VRP methods, Section IV discusses the route 
optimization of road transport, Section V is a review of the literature, and the last section, Section VI, is a conclusion of the 
paper. 

II. DYNAMIC ROUTE OPTIMIZATION IN TRUCKING 
The objective of stochastic transportation problem of the Dynamic Vehicle Routing Problem (DVRP) is to represent the 

behaviour of actual systems with an element of uncertainty and dynamism. Some of the real-life problems that are introduced 
in DVRP include dynamic arrival of the new customers, stochastic travel time and availability of the vehicles of events [8]. These 

elements bring the problem formulation closer to real-world logistics [9]. Customer availability changes are the most noticeable 
part of DVRP.  Here are some ways to classify the dynamic parts of DVRP: 

Dynamic consumers' Customer information is unveiled gradually and simultaneously with the execution of routes.  In 
this category are requests that are subject to change, such as those involving location, demand, and availability. 

• Dynamic order times: The customer delivery or service deadline might vary, and it might be necessary to fulfil it quicker 
than it was originally intended. 

• Dynamic travel conditions: The arrival of a vehicle can be delayed by some external condition like traffic congestion or 
weather. 

• Dynamic service times: The scheduled times of service or repair could vary according to circumstances at the customer 
location. 

• Dynamic vehicle availability: The capacity and routing decisions of a fleet can be changed by unexpected events like 

vehicle breakdowns. 

DVRP is strongly connected with simulation techniques because random changes of the environment should be modelled 
to mimic reality. The Discrete Event Simulation is ideal for use because transitions occur at specific time steps [10]. 

Recent studies highlight the challenges of integrating machine learning into DVRP. For instance, reinforcement-based 
methodologies that incorporate hybridization with metaheuristics (e.g., Simulated Annealing) enable the process of adapting to 
dynamic customer demands in real-time [11]. Equally, further extensions of tree-based search techniques, like Monte Carlo Tree 
Search (MCTS), to dynamic routing with stochastic events, like traffic jams, have been made. These algorithms model potential 
situations and update routes in an human like fashion and show encouraging advances over traditional static solutions and 
optimization algorithms. 

A. Intermodal Truck Routing Problem (ITTRP) 

The ITTRP arises in container ports with multiple terminals, necessitating the regular movement of containers between 
terminals, other yards, and facilities for logistics purposes. ITTRP is a specific facet of the classical VRP and is crucial for making 
ports more efficient, as well as reducing logistical costs and enhancing sustainability [12]. Optimizing solutions to the ITTRP 
related to these returns can be defined by the following objectives: 

• Minimising delays associated with transport to maximise the flow of containers and avoid congestion. 
• Minimising transport cost through truck use, distance travelled and time. 
• Minimising empty trip costs by considering joint routings between trucking companies and/or load balancing. 
• Minimising emissions associated with trucking by factoring emission costs into routing. 

Several methodological strategies have been developed to address the ITTRP: 
• The ITTRP is also a Mathematical Optimisation Model: Several optimisation models have been developed that minimise 

costs and delays subject to time-window and capacity requirements. 
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• Heuristic and Metaheuristic Algorithms: Various heuristics, such as greedy heuristics or metaheuristics, such as 
simulated annealing and hybrid approaches have been created to produce almost ideal results in a manageable computing 
time [13]. 

• Collaborative Routing Models: Any approach to relate the trucks (or trucking companies) collaboratively should lessen 
the number of empty trips or trip durations by sharing orders and resources. 

• Multi objective Models: These models look to consider environmental factors, financial costs associated with vehicle costs, 

travel time, environmental penalties, and emissions into routing decisions. 
• Technology-Based Solutions: Unique mobile applications that provide cloud-based platforms, monitor real-time tracking, 

and employ context-aware decision-making or suggest routing strategies [14]. 

A complicated issue because port operations are dynamic and stochastic, and the demand and traffic conditions of 
containers change constantly, and because coordination among actors in the supply chain systems is needed at a real-time scale 
[15]. Developing transport schedules and route optimisation, along with the introduction of intelligent decision-support systems, 
would be recommended as prospective study directions. 

B. Self-Driving Trucks in Logistics 
Self-driving trucks, also known as autonomous trucks, are profoundly changing how the logistics and transportation 

industries operate [16]. These trucks are equipped with cutting-edge artificial intelligence (AI), sensors, and autonomous 
operation capabilities, allowing them to operate without human oversight. Though autonomous trucks are initially aimed at the 

long-haul freight-related activities, a Real-time environmental identification can be facilitated by a mix of LiDAR sensors, 
cameras, radar, and other ultrasonic sensors [17]. Although LiDAR provides clear three-dimensional mapping for obstacle 
identification, cameras evaluate the status of traffic signals and lane markings, and AI algorithms facilitate decisions regarding 
vehicles’ movements, navigation, and route planning in real-time. The artificial intelligence is essential to facilitate autonomy 
[18]. Machine learning algorithms make the trucks identify and react to road signs, improving their performance by what they 
have learned in their driving experiences through continuous learning. 

The ability of self-driven trucks to immediately switch their direction to escape congested areas is a significant advantage 
as is the ability to process large amounts of data, including the condition of the road, the traffic and the weather and the road 
closures. This minimizes the delays and enhances the supply chain by enhancing fuel consumption and steady delivery 
performance [19][20]. Moreover, autonomous trucks do not need to be restricted by tiredness or controlled driving shifts as 
human drivers since they can work 24-hour days, as they are not fatigued. This boosts efficiency of the supply chain, minimizes 

delays and costs are further minimized. 

C. Challenges and Potential Directions 
In spite of this gigantic leap forward, many issues remain to be solved when it comes to using machine learning in retail 

logistics, especially in truckload optimization. The current challenges include some of the persistent challenges as:  
• Data Quality and Availability: The accuracy of the ML model highly depends on real-time data availability and accuracy 

[21]. The performance of the model is affected by inconsistency and incomplete data.  
• Scalability: Even though machine learning algorithms can be very effective in certain applications, the difficulty lies in 

the scaling of their capabilities to cover large and complex logistics networks [22].  
• Real-time Adaptation: The model should be improved though most models achieve an efficient performance in steady 

environments, adjustment to the real-time logistics uncertainties [23], which includes sudden traffic changes and 

unexpected orders, are needed. 
• Cost and Complexity: Implementing the ML models, in particular, deep learning and the hybrid models [24] is 

computationally expensive and needs trained staff. 

III. MACHINE LEARNING-BASED TECHNIQUES AND ALGORITHM VRP 

 
Figure 1 : Methodology Flowchart for the Research Approach 
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Logistics Transportation Route Optimization Algorithm enhances the efficiency of truckloads and optimization of delivery 
routes by addressing a Vehicle Routing Problem (VRP) using big data analytics and ML. The strategy addresses the major issues 
of data quality, scalability, and real-time flexibility, so that intelligent planning of routes based on the dynamic description is 
possible. The flowchart of the proposed method is shown in Figure 1 and it represents the general flow of the work in the 
optimization of VRP. 

A. AI In Dynamic Route Planning for Transportation. 

In the field of logistics AI has transformed the modern logistics system with the ability to create dynamic routes in 
transportation, enabling the use of data to make real-time decisions. The concept of route optimization is connected to the 
transportation management since it is a process of identifying the most effective routes to transport to reduce the delivery time, 
fuel consumption and cost or operating costs. Traditional techniques of manual planning and fixed route optimization do not 
consider dynamic variables in existence, which include traffic congestion, traffic uncertainty, weather changes, incidents and 
fuel prices. This has been transformed by AI and ML which takes advantage of real-time data feed provided by GPS systems and 
traffic sensors, weather APIs, and incident databases to constantly refresh and optimize the delivery routes [25]. The negations-
driven systems are dynamic and responsive which allows the aspects of the logistics network to recalculate a change of course 
in real-time (based on a factor of disruption) and the waiting time is reduced, fuel savings are better, and operational efficiency 
is improved. 

B. Data Collection and Analysis  

The initial stage of any research data collection and analysis. This involve sorting the information in a file.  It entails the 
following steps:  

• GPS tracker, navigation systems, and transport agency traffic data also offer both real-time and historical information 
regarding congestion, road closures, and vehicle traffic.  

• Meteorological services and APIs provide weather information, which is important in route planning (temperature, 
precipitation, visibility, and so on).  

• Data on on-site logistics provided by fleet management systems delivers vehicle status, cargo, fuel consumption and 
turnaround times to facilitate effective routing and resource deployment. 

The pre-processing  stage process involved deletion of outliers, noise reduction, data normalization, data standardization, 
feature selection and cross-validation. The process was adopted to ensure the dataset was purged of inaccuracies and mistakes, 
the gaps in the dataset were managed adequately as well as the units were standardized [26]. All this resulted in enhanced 

quality, consistency and reliability of data and provided enough basis to effective optimization of dynamic routes in truck 
transport systems. 

• Outlier Cleansing: The travel time, distance, and fuel consumption were outliers that were removed to produce optimal 
results of unrealistic optimization as well as realistic route modeling. 

• Data Noise Reduction: The GPS and the traffic data were filtered with smoothing to remove random fluctuations and 
sensor errors in the data, which improved the accuracy of the input data. 

• Normalization: These values of the feature were normalized to a normal range, which included distance, cost, and time, 
to achieve convergence of the model and prevent the tendency of the model to large values. 

• Standardization: The data attributes were normalized such that the mean is zero and unit variance hence each variable 
contributed equally to the optimization program. 

• Feature Selection: The features like the road conditions, the time windows in which the deliveries take place, and the 
traffic density were selected to enhance the effectiveness of the model and reduce the number of calculations. 

• Cross-Validation: To assess the model's capacity for generalisation and reduce overfitting, the data was separated into 
training and validation sets, and offer reliable findings of the route optimization. 

C. Vehicle Routing Optimization Models 
Traditional techniques, which use both deterministic and non-deterministic methods, have been well investigated for 

classical vehicle routing problems (VRPs). In the logistics route planning domain, metaheuristic approaches such as Genetic 
Algorithms (GA), Simulated Annealing (SA), and Ant Colony Optimisation (ACO) algorithms, as well as the Travelling Salesman 
Problem (TSP) and the Clarke-Wright savings algorithm, have long been dominant. Although they are helpful in limited 
environment, these approaches are not good at real-time flexibility [27]. 

In recent years, Machine Learning and Predictive Models have introduced new models for traffic prediction and route 

optimization. Short-term prediction of traffic flow has been done using Support Vector Machines (SVMs), Random Forests (RFs), 
and ensemble. They however, perform poorly when faced with complicated temporal information. 
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a) Algorithms Selection 
In pursuit of a refined road transport model, selected machine learning algorithms based on their track record of 

successfully resolving challenging optimisation issues and their capacity to handle massive amounts of data. The methods used 
are essential to achieving a high degree of accuracy in transport route prediction and optimisation. Each algorithm's breakdown 
and justifications are provided below. 

i) Support Vector Machines (SVM) 

SVMs are well known for their ability to solve high-dimensional classification problems, particularly when there are 
many dimensions involved. In route optimisation, where the association between input data (road conditions and traffic 
conditions) and the outcome (best routes) can be very non-linear, their capacity to represent non-linear decision boundaries 
using kernel methods delivers priceless applications. 

• Strengths: SVMs are less likely to overfit and perform effectively in high-dimensional domains, especially when there are 
more dimensions than samples. 

• Limitations: They require regularisation and a better kernel parameter selection, both of which can be expensive to 
optimise. Additionally, SVMs do not immediately provide probability estimates, which are crucial in some decision-
making procedures. 

ii) Logistic Regression (LR) 
Logistic regression is a simple yet powerful model for binary problems, although it is not exhaustive. When implemented 

in the route optimization context, it can also make binary decisions, i.e., between 2 choices, selecting a route. 
• Strengths: It is straightforward, easy to use and it also has the benefit of viewing the effect of every attribute. 
• Limitations: It is limited to the orthogonal lines of the decision-making process that can impair its functioning in more 

complicated circumstances. 

D. Deep Learning and RL-based Approaches 
The emerging revolutionary technologies in route optimisation, deep learning and reinforcement learning (RL), provide 

astute, flexible, and data-driven solutions to complex transportation networks. Deep learning networks, particularly LSTM and 
GRU networks, are suitable for analysing long-term temporal relationships in time-series data, such as traffic movement, 
congestion behaviour, and vehicle movement patterns. Such models are superior to traditional statistical and ML approaches, 
as they practically approximate non-linear time-based associations, seasonal fluctuations, and situational dependencies in 
dynamic road conditions.  

Deep Q-Networks (DQN), Policy Gradient-based techniques, and Reinforcement Learning (RL), in particular, have been 
deployed at the opposite end to make choices in uncertain environments. Another use of RL in the logistics field is the dynamic 
routing, adaptive scheduling and vehicle dispatch [28]. However, few studies integrate reinforcement-driven route 
modifications with real-time traffic forecasts inside a single framework. The practical potential of hybrid deep learning and RL 
techniques for intelligent transportation systems is highlighted by recent advances in integrating LSTM and Q-learning. 

Table 1 displays a comparative performance summary of the suggested deep learning model and the conventional VRP, 
demonstrating gains in fuel usage, flexibility, average delivery time, and on-time delivery rate. 

Table 1 : Comparative Performance Metrics of Traditional VRP and Proposed Deep Learning Model 

Metric Traditional VRP Proposed Deep Model Improvement 

Average Delivery Time 52.4 min 41.2 min 21.3% 

On-Time Delivery Rate 72% 89% +17 pts 

Fuel Consumption 6.8 L/100 km 5.9 L/100 km 13.2% 

Adaptability Score 0.64 0.91 +42% 
 

E. Model Training and Evaluation 
The following indicators were employed to assess the results of the algorithm: 

• Evaluate and rank using measures like AUC, F1-score, recall, precision, etc. 
• A box plot is a useful tool for comparing the distribution of performance ratings among various algorithms. 
• Problems in predicting correctly and incorrectly in a matrix. 
• Generate separate sets of data for use in training, validation, and testing.  Train the models on the training data and test 

them on the validation data. 
• Utilize performance measures like load optimization accuracy, fuel usage, delivery time, and processing speed in an 

attempt to compare the models. 
• To improve model performance and avoid overfitting or underfitting, adjust the hyperparameters. 
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IV. ROUTE OPTIMIZATION IN ROAD TRANSPORT 
In order to increase the effectiveness, dependability, and profitability of logistics operations, road transport optimisation 

is crucial for cutting down on fuel consumption, journey time, and overall transportation expenses. For the most effective 
delivery across various forms of transportation, route optimisation generates route options using algorithms and other data-
driven methodologies. Vehicle logistics multimodal route optimisation facilitates the transportation of automobiles by land, rail, 
or other means from production facilities to distribution hubs and dealerships, guaranteeing improved coordination, shorter 

wait times, and more equitable resource allocation [29]. In the meantime, the optimization of logistics transportation routes 
applies big data analytics and algorithms such as Tabu Search to enhance the multimodal transport planning, route assignment, 
and cost-efficiency [30]. These methods combined are the building blocks of road transport infrastructure, which allow logistics 
companies to seek out sustainable, intelligent, and profit-oriented transportation management. 

A. Vehicle Logistics Intermodal Route Optimization. 
Vehicle logistics is a vital component of the logistics system as a whole, and it deals with Transportation of automobiles 

to distribution facilities and then to dealerships. In a general sense, automobile logistics can be divided into parts logistics and 
vehicle logistics [31]. Parts logistics capture the flow of parts throughout the entire lifecycle, including procurement, production, 
sales as well as the recycling or import/export phases. Logistics for vehicles encompasses not only the transportation of parts 
but also waste, recycling, sales, import/export, and call-back services. Depending on the type of vehicle, sales logistics can be 
further categorized as either engineering, commercial, passenger, or special. 

The optimal transportation system for maximizing profits is based on the topology of multimodal vehicle logistics 
networks. For this reason, constructing a strong and effective transportation network topology was required to achieve optimal 
route planning and maximum logistics efficiency. 

B. Logistics Transportation Route Optimization. 
Big Data Analysis and Logistics Transportation Route Optimisation Algorithm, was thoroughly examined in a range of 

transportation contexts to measure the degree to which operational efficiency within logistics can be improved. The 
experimental design was arranged to evaluate the performance of the algorithm, as well as its impact on several areas of 
transportation logistics, including route efficiency, reduced transportation costs, and resource efficiency. 

The logistics transport routes of Company X were subjected to the Tabu Search Algorithm in order to provide data for 
optimisation study. The creation of a multimodal vehicle transport route with the goal of increasing overall logistics efficiency 
was the main focus of the optimisation. About 87% of Company X's whole route length was on roads, making road transport 

the primary component of their logistics network as opposed to railroads and waterways. In order to improve delivery 
performance and lower operating costs, the optimisation process aimed to create a more balanced and effective multimodal 
transport structure. The logistics transportation plan's optimisation outcomes are shown in Figures 2(a) and (b), which also 
show how the path proportions for various routes varied before and after optimisation. The optimised model successfully 
balances the usage of numerous transportation modes, eliminating excessive reliance on roads and increasing the use of rail 
transit, as shown by the comparison of highway and railway proportions in Figure 2 (a). The optimisation results for the identical 
routes are shown in Figure 2 (b) before and after, demonstrating a more reliable and effective allocation of transit routes after 
optimisation.  

 
Figure 2 : (A) and (B) Optimization Results of the Transportation Plan for Profit Changes Before and After 

Optimization 
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The general tendency holds that the plan optimization would lead to the improved effectiveness of the route allocation, 
that would lead to the creation of a more balance multimodal transport system that would help in the added profit margins and 
operational efficiency of the logistics transportation. 

C. Predictive Accuracy and Demand Forecasting 
The deep learning models can make correct demand forecasting and conduct proactive route planning and load 

distribution to reduce the delays and operational bottlenecks. Anticipating changes in order volumes also allow logistics 

companies to flexibly distribute resources which enhance fleet optimization, fuel efficiency and on-time delivery. 
• Demand Forecasting Accuracy: The implementation of DL models i.e. LSTM networks increased the accuracy of demand 

forecasting by 20% [32]. The better forecasting allowed the logistics company to plan better in high season, to predict 
fluctuations in quantity of orders and to redistribute the truckloads respectively. 

• Optimization of Resource Utilization: The increased demand forecasting was beneficial in resource allocation, thus 
avoiding under-loading or over-loading of transport vehicles. Proper load balancing during peak times enhanced 
efficiency of operation, minimized costs, better fuel consumption, and delivery performance, customer satisfaction, and 
sustainability. 

V. LITERATURE REVIEW 
The existing literature review of dynamic vehicle routing combined with the areas of application of STs in logistics 

demonstrates the main tendencies, empirical findings, and technological innovations, which offer the key to guide the research 

and practical solutions in the future. 

Chung's (2021) purpose is to assess all the significant advances related to the application of STs to improving the 
efficiency of the transportation system and logistics.  The most crucial aspect is understanding the technical challenges academics 
face in implementing optimization strategies and examining how these challenges arise from ST applications. That completes 
the studies, and a recommendation for future study is also made. The emergence of smart technologies (STs) is causing 
significant changes in logistics and transportation.  Through data science and artificial intelligence methods like machine 
learning and big data, STs use blockchain technology and the Internet of Things (IoT) to give things autonomy and cognitive 
awareness [33].  

Yu et al. (2021) using the Internet of Things and cognitive algorithms to optimise transportation routes.  To optimise GA, 
the coding mode, fitness function, selection, crossover, and mutation operators of the traditional GA are first examined. After 
environment the crossover probability and mutation probability to 0.6 and 0.1, respectively, the modified GA was utilised to 

develop a vehicle route optimisation model. Finally, simulations that optimised vehicle routes for fifteen client sites and a few 
distribution centres were used to assess the model's validity. Afterwards, distribution plans are determined using an algorithmic 
model that takes product demand and time sensitivity into account [34]. 

Dellermann, Gehring and Zirn (2020) Building a comprehensive optimum control plan based on anticipated powertrain 
data takes into account the statuses of the hybrid-electric drive train and electrified auxiliaries. An extra power network 
operating at 48 V supplies the powertrain and auxiliary equipment. The truck's total fuel consumption may be further decreased 
by maximising the energy transfer between the powertrain and auxiliaries. This contribution focuses on electrified auxiliaries, 
specifically air conditioners and air compressors. Numerous state-control combinations need to be tested. It makes use of 
heuristic knowledge to lessen computational effort.  The driven path is divided into sections with a relatively consistent power 
demand to avoid manifestly irrelevant states [35].  

Kucharska (2019) differentiates dynamic VRP, which considers the changing appearance of consumers to serve while 
designing or executing routes. Notably, the analysis accounts for both the known and the unpredictable components of the 
customer's availability. The algebraic-logical meta-model (ALMM) is first used to simulate the predicted variation in customers' 
availability based on a relevant general rule. This methodology allows for group decisions to be made at various points in the 
process, rather than for individual vehicles. A new algebraic-logical model is proposed to address the problem of dynamic vehicle 
routing with expected customer availability. This article shows how the ALMM method could be used to deal with changes in 
the environment, such as expected and unexpected client availability [36].  

Nazari et al. (2018) developed a solitary model that, using only reward signals and feasibility rules, provides almost ideal 
answers for problem cases selected from a certain distribution. No need to retrain for each new problem instance, their trained 
model generates the answer as a series of sequential actions in real time, representing a parameterized stochastic policy that 
has been optimized using a policy gradient technique. For medium-sized instances on capacitated VRP, method achieves better 

solution quality than conventional heuristics and Google's OR-Tools, while consuming comparable amounts of computing time. 
In addition to the stochastic VRP and other VRP variants, their suggested framework could be used for combinatorial 
optimization issues in general [37]. 
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Cattaruzza et al. (2017) explore the challenges encountered in urban areas while attempting to distribute vehicles 
efficiently. This methodology is utilized.  For starters, it surveys the works written about optimizing routes for urban vehicles. 
It then sorts and examines logistic flows in cities. Therefore, it pinpoints the most pressing scientific issues that require fixing, 
including time-dependency, distribution organization with several levels and trips, and updated data. This paper ends by 
examining how the literature deals with each of these issues and with highlighting the underlying challenges they imply [38]. 

Table 2 gives a summary of the recent works, which summarizes their methods, main results, challenges and future 

suggestions to enhance the adoption and efficiency of dynamic vehicle routing to truck and smart technologies in logistics. 
Table 2 : Literature Summary on Dynamic Route Optimization for Trucks. 

Reference Objectives Methodology / 
Approach 

Dataset / 
Application 

Domain 

Key Findings / 
Contributions 

Research Gaps 

Chung 
(2021) 

Identifying 
technical issues in 

optimization 
approaches and 

reviewing 
important 

contributions of 
Smart 

Technologies (STs) 
to increasing 

logistics operations 
and transport 

network efficiency. 

Comprehensive 
literature review 
on AI, ML, IoT, 
and Blockchain 

integration in 
logistics and 

transport systems. 

Secondary data 
from prior 
studies and 
industrial 

applications in 
logistics 

networks. 

Highlighted that 
STs transform 

logistics through 
intelligent, data-

driven 
optimization and 

automation. 

The future studies 
are to consider 

how to incorporate 
the data in real-

time between fields 
and evaluate ST-

based optimization 
models at large 

scale because there 
is no empirical 

validation. 

Yu et al. 

(2021) 

To optimize vehicle 

routing using IoT 
and intelligent 

algorithms. 

Improved Genetic 

Algorithm (GA) 
with refined 

fitness, selection, 
crossover (0.6), 

and mutation (0.1) 
parameters for 
vehicle routing. 

Simulated data 

from distribution 
centers and 15 
customer sites 

(IoT-based 
vehicle tracking 
environment). 

Improved GA 

achieved higher 
efficiency and 

reduced delivery 
time, 

demonstrating the 
model’s validity for 
route optimization. 

Real-world IoT 

datasets not 
utilized; future 

work should 
integrate live 

sensor and traffic 
data for adaptive 

routing in dynamic 
environments. 

Dellermann, 
et.al. (2020) 

To design an 
optimal control 

strategy using 
predicted 

powertrain data 
for hybrid-electric 

trucks. 

Developed an 
optimal control 

strategy using 
predictive 

modeling and 
heuristic 

evaluation to 
reduce 

computational 
load. 

Powertrain data 
and simulation 

environment for 
hybrid-electric 
vehicles with 

electrified 
auxiliaries (air 
conditioners, 
compressors). 

Reduced overall 
truck fuel 

consumption by 
optimizing energy 
flow between the 
powertrain and 

auxiliaries. 
 

The lack of real-
world testing is a 

limitation; future 
work could 

integrate predictive 
ML models for 

energy flow 
optimization and 
extend to electric 

fleets. 

Kucharska 
(2019) 

To distinguish 
dynamic VRP with 

predicted and 
unpredictable 

customer 
availability. 

Proposed 
Algebraic-Logical 

Meta-Model 
(ALMM) for 

collective route 
decision-making 

across stages. 

Synthetic dataset 
for dynamic 

customer 
availability 
scenarios. 

Demonstrated 
ALMM’s efficiency 

in handling 
dynamic VRP with 

predictive 
customer data, 

improving 
responsiveness. 

Needs testing on 
large-scale, real-

world logistics 
datasets; limited 
incorporation of 
external factors 
like traffic and 

weather. 



Sai C. Pallaprolu    / ESP JETA 2(4), 192-201, 2022 

200 

Nazari et al. 
(2018) 

This reinforcement 
learning-based 
model training 

aims to generate 
nearly optimal VRP 

solutions. 

Policy gradient 
algorithm with 

stochastic policy 
representation; 

model learns 

through reward 
signals. 

Capacitated VRP 
benchmark 

datasets 
(synthetic and 
standardized 

instances). 

On medium-sized 
VRP instances, it 

outperformed 
classical heuristics 

and Google OR-

Tools while 
requiring 
equivalent 
amounts of 

compute time. 

Future research 
could generalize 
this model for 

stochastic, time-
dependent, and 

dynamic VRPs; 
integration with 
real logistics data 
remains limited. 

Cattaruzza 
et al. (2017) 

To survey urban 
vehicle routing 
problems and 
identify main 

scientific 

challenges. 

Systematic 
literature survey 
and classification 
of urban logistics 

optimization 

issues. 

Review-based; 
focused on urban 

freight 
distribution 
problems. 

Identified core 
challenges: time-

dependency, 
dynamic routing, 

multi-level 

distribution, and 
real-time decision-

making. 

Highlighted need 
for dynamic, real-
time, multi-modal 
route optimization 

frameworks 

integrating big data 
and AI-driven 

predictive 
analytics. 

VI. CONCLUSION AND FUTURE WORK 
This survey has discussed how machine learning has found application in dynamic optimization of truck transportation 

routes and that the old dynamic vehicle routing problem (DVRP) models are substituted by data-driven and adaptive 
optimization models. The modern logistic systems can adjust to the changes in the real-time traffic, weather, and the fluctuating 
demand slipping that lead to the drastic alteration of the delivery time, fuel usage, and operational elasticity, combining 

heterogeneous data sources and applying to the advanced learning models, such as the deep neural networks and the 
reinforcement learning. Despite this, in spite of these advancements, there exist several drawbacks including high levels of data 
dependency, high levels of computational complexity, reduced interpretability of deep models, and the challenges associated 
with the implementation of solutions based on learning to large-scale and real-life logistics networks that are defined by strong 
time and infrastructure constraints. Furthermore, the availability and quality of real-time data can also play a major role in the 
model robustness and reliability. The future work would be to develop hybrid optimization systems that combine explainable 
machine learning with the metaheuristic algorithm to scale up the former, explore distributed learning and edge models to 
optimize, encourage uncertainty sensitive and multi-objective optimization and empirically test the models with real-world 
industrial data. The challenges will be required to upgrade intelligent, reliable and sustainable route optimization solutions to 
next generation of transportation systems. 
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