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Abstract — Cloud computing's unexpected and dynamic workload fluctuations, which have a substantial influence on
system performance, operating costs, and user experience, make efficient and scalable resource management an ongoing
problem. To address these challenges, this study proposes a proactive resource utilization prediction framework leveraging
machine learning to enable adaptive, intelligent, and timely resource allocation in cloud environments. The framework
utilizes the Microsoft Azure Traces 2017 dataset, which provides realistic telemetry data, to accurately forecast CPU usage
trends. A comprehensive preprocessing pipeline—including data cleaning, feature engineering, and feature scaling—ensures
high-quality input for model training and reliable predictive performance. Two proposed models, Linear Regression (LiR)
and Bidirectional Long Short-Term Memory (Bi-LSTM), are employed to capture both linear patterns and complex temporal
dependencies in data. For benchmarking, established comparison models—Autoregressive Neural Network, SVM, and VAR-
GRU—are evaluated. Performance metrics include R? RMSE, MSE, and MAE. LiR achieved R? = 0.9834, RMSE = 0.0170,
MSE = 0.00029, and MAE = 0.0125, while Bi-LSTM achieved R? = 0.9733, RMSE = 0.0217, MSE = 0.00047, and MAE =
0.0168, clearly outperforming the comparison models. Future work will focus on extending the framework to multi-
resource forecasting, incorporating memory, network, and GPU metrics, and further enhancing cost-effectiveness and
adaptive scaling in large-scale cloud environments.

Keywords—Resource Management, Machine Learning, Resource Utilization, Proactive Scaling, Resource Allocation, Cloud
Computing.

I. INTRODUCTION
The new digital infrastructure now requires cloud computing as a component, changing the way organizations and individuals
retrieve, store, and manipulate data. It provides on-demand access to resources, flexibility and affordable solutions in different
fields, such as scientific research, engineering and business processes [1][2]. The actual strength of cloud systems is scalability and
elasticity since the resources may be expanded or reduced according to the demand[3]. However, there is the problem of efficient
use of resource. Also, the dynamic, unpredictable, and heterogeneous nature of workloads grows, and the methods of allocating
jobs to employees become increasingly less realistic, leading to inefficiency and performance bottlenecks [4].

The dynamic and heterogeneous nature of workloads in cloud deployments means that the requirements of the resources
continuously fluctuate, and many of the changes are normally not predictable manually [5]. The ineffective allocation of resources
occurs because control of this variability is done by inflexible rules or manual actions. The low resource utilization levels in the
present-day data centers can impact the high availability levels of infrastructures that resulting in inefficiencies in operations and
high costs of energy. A solution to these problems [6] is to proactively manage the resources. In the prospect of the future resource
demands, optimization of performance, decrease of the energy wastage, and operational costs are possible, which leads to the
stabilization of the services and cost efficiency.

The traditional or reactive approach to resource allocation, such as threshold-based monitoring and rule-based scaling, does
not apply well when it comes to the modification of rapidly changing workloads. The over- or under-provisioning may lead to the
system performance decline, breach of service-level agreements, and avoidable expenses and energy consumption, respectively.
The existence of such problems points to one of the biggest shortcomings of current cloud management policies. The point is that
itis hard to foresee the use of resources like memory, bandwidth, and CPU, and storage in a scalable manner [7][8]. An appropriate
solution to this issue can help make systems in a large-scale cloud setup cost-efficient and reliable[9].

Cloud providers are not left behind as they strive to solve these problems using smart and automated resource management
procedures. Being predictive, smart solutions forecast demand shifts based on historical and real-time usage information and
assign resources to them [10][11]. This not only enhances performance and availability, this also brings about cost-efficient
operations and reduced cost of operation. More precise forecasting mechanisms are also quite handy in improving improved
scheduling, load balancing and service level assurance that in the long run, would translate to improved end-user quality of
service[12][13].
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The subject of machine learning (ML) has also become a viable issue that can be used to model nonlinear and complex
behaviours of a system. ML also allows the proactive supply of resources instead of a response to historical utilization and present
utilization data[14]. With this change, it is possible to predict the workload, the strategies plans of scaling down and minimized
waste [15][16]. The ML approaches have already managed to predict the use of cloud resources by being successful in predictive
autoscaling, anomaly detection and capacity planning and therefore it would best suit the use of the methods to predict the use of
them. ML is deployed to make the providers more scaled, cost-effective and reliable leading to smart and data-driven cloud
management.

A. Motivation and Contributions of the Study
The rapid evolution of cloud computing, service providers are facing more challenges of effectively handling the dynamic

workloads within scalable infrastructures. Unexpected spikes in the use of resources may cause performance declines, higher

operating costs and poor user experiences. The conventional methods of statical allocation of resources generally cannot respond

to these changes in real-time, and, hence, either over-provision or under-provide resources. Another potentially useful solution is

the machine learning-based predictive analytics because this tool enables making decisions proactively. The ability of the cloud

systems to predict resource usage allows them to optimize the performance, lower expenses while upholding service level

agreements (SLAs). This study is guided by the need to establish a smart, data-oriented system that has the potential to forecast

resource needs and provide scalable, efficient, and dynamic resource management to the modern cloud-based environment. The

current study adds the following aspects:

e They propose a robust methodology to forecast the use of resources in cloud systems which involves pre-processing of data,
feature engineering of data, and multifaceted models of ML.

e  Bidirectional Long Short-Memory (Bi-LSTM) and Linear Regression (LiR) are employed to identify both linear trends and
complex time-related trends of the usage of resources to ensure a high degree of prediction accuracy.

e  The framework is applied to the Microsoft Azure Traces 2017 data, which provides the real telemetry data, thus, the predictions
in the dynamic cloud environment become more feasible.

e The models are thoroughly verified with the assistance of the different metrics (R?, RMSE, MAE) and they present the full
picture of predictive accuracy and reliability.

e The forecasts made by the framework can be used in pre-emptive scaling and provision of cloud services and reducing
operation costs, preventing service outages, and increasing the overall efficiency of the systems.

B. Justification and Novelty of paper

To establish the sense of the necessity of adequate and effective management of cloud resources, the analysis suggests a dual-
model architecture that combines Linear Regression (LiR) and to forecast both linear and multidimensional time series tendencies
in cloud resource utilization, Bi-LSTM is used. The proposed models are compared to Autoregressive Neural Network, SVM, and
VAR-GRU, compared to the current methods and demonstrate higher qualities of prediction. The real-world usage of the actual
telemetry data would prove to be dependable and applicable in real-time in mobile cloud scenarios. A thorough analysis based on
R?, RMSE, MSE, and MAE emphasize accuracy, effectiveness, and strength to support the clever, flexible, and proactive use of
resources and promote performance and cut down the costs of operation.

C. Organization of the paper

The paper is structured as follows: Section II examines relevant cloud resource management work. Section III presents the
proposed methodology, detailing data pre-processing and the implementation of ML models. Section IV discusses the experimental
configuration and the prediction models' performance outcomes. Finally, Section V concludes the study, highlighting key findings,
practical implications, and potential directions for future research.

II. LITERATURE REVIEW
The evaluated research focus on CPU, GPU, and multi-resource workloads and explore several machine learning methods to
forecast cloud resource utilization. Methods such as DCRNN, RNN, SARIMA-LSTM and SVR maximize forecasting, but they have
scalability and real-time adaptation issues.

Al-Asaly et al. (2022) describe the challenges associated with the forecasting of future CPU resource demands of Software as
a Service (SaaS) providers with changing workloads and the existence of multiple virtual machines (VMs). Their concept is an
advanced DL technique that uses a diffusion convolutional recurrent neural network (DCRNN) to enhance workload prediction
and provide cloud resources. This model's objective is to increase predicting accuracy under varying workload patterns and was
tested on the real-world data of CPU usage on Planet Lab. It is found that results are greatly improved when compared to the
current models, with the average absolute percentage inaccuracy was 0.18 and the root-mean-square error was 2.40 [17].

Cioca and Schuszter (2022) discuss the benefits of DL time-series analysis to use fewer computing resources, in the direction
of greener data centres. They state that contemporary software development systems, such as container technology use like
Kubernetes and Docker, tend to consume substantial resources, even when they are not active. The authors report a predictive
system designed on the data and parameters of actual production systems in CERN that uses an RNN model that uses previous
data to forecast future resource usage. This allows intelligent machine/container scaling down when it is not in use. Their results

167



Siddhesh Amrale / ESP JETA 3(4), 166-175, 2023

show possible carbon footprint savings in computing services, and CPU utilization improvement of up to 60-80% over classic
approaches, which do not go deep in terms of historical analysis [18]

Anupama, Shivakumar and Nagaraja (2021) describe a new method of predicting workloads on clouds, which is directed at
optimizing the use of resources through efficient resource administration plans. In order to manage workloads that are both
seasonal and non-seasonal, the authors suggest a hybrid prediction model that blends machine learning and statistics. Seasonal
data is estimated using the Seasonal Auto Regressive Integrated Moving Average (SARIMA) model, whereas non-seasonal
workloads are estimated using the Autoregressive Integrated Moving Average (ARIMA) and LSTM networks depending on the
results of the normality test. The predictive model predicts the number of resources needed in different periods and reveals that
the LSTM model is much superior to ARIMA in forecasting irregular patterns and SARIMA in predicting future resource
requirements. The study assists cloud service providers to balance workloads in order to avoid resource over or under provisioning

[19].

Ntambu and Adeshina (2021) describe the major problems of security in cloud computing, especially because it incorporates
multiple technologies, such as networks and virtualization. They also mention current security methods including intrusion
detection and two-factor authentication, but they warn that there is a chance that hostile people might get access to virtual
machines (VMs). The recommendations offered by the authors are proactive monitoring and a model of anomaly detection which
operates on the Virtual machine (VM) resources and applies the ML algorithms to the work of One-Class Support Vector Machine
and Isolation Forest (OCSVM). The average F1-scores for hourly and daily time series are 0.97 and 0.89, respectively, indicating
that OCSVM performed better than IFS in time series categorization [20].

Yeung et al. (2020) Discuss the importance of considering the utilization of GPUs in DL applications to optimize resource
utilization and cloud cost-benefit evaluation. The current approaches of measuring GPU usage focus on online profiling of a single
isolated device, i.e., a single task, and need separate profiling, which results in underutilization and reduced service capacity. In
this regard, the authors suggest a prediction engine, which can predict the use of the GPUs in terms of multiple DL workloads
without requiring a vast amount of online profiling. They make these predictions by extracting the data from the model
computation graph. The results indicate that the prediction engine's Root Mean Squared Logarithmic Error (RMSLE) is 0.154,
allowing DL schedulers to optimize the use of the GPU clusters by a maximum of 61.5 [21].

Abdullah et al. (2020) In order to reduce waste, highlight how cloud computing uses resources. Current methods use resource
allocation and virtual machine consolidation, among other resource management systems. The significant degree of
unpredictability in cloud resource utilization necessitates efficient prediction techniques. This study proposed the Support Vector
Regression Technique (SVRT), A technique to supervised statistical learning for estimating the utilization of multi-attribute host
resources. Training was conducted using the Sequential Minimal Optimization Algorithm using the Radial Basis Function kernel,
the technique is found to be meaningfully better on prediction error (4-16% better) and training error (8-60% better) on real-
world workloads of BitBrain, PlanetLab, and Google Cluster Workload Traces [22].

The Table I shows previous studies of workload prediction, which identify the methods, datasets, and gaps in multi-resource
forecasting, scalability in real time, handling heterogeneous workloads, and sustainable optimization.

Table 1: Existing Studies on machine learning-based workload prediction or cloud resource utilization

References Dataset ML Approach Key Outcomes Limitations Future Directions
Al-Asaly et | PlanetLab DCRNN - | MAPE = 0.18, | Singleresource (CPU) | Extend to multi-resource
al. (2022) CPU usage | captures RMSE = 2.40; | only; limited real- | forecasting; integrate
traces temporal and VM | improved time testing; VM | adaptive real-time
correlations forecasting correlations not fully | prediction; test  under
accuracy modeled heterogeneous workloads
Cioca and | CERN RNN - predicts | 60%-80% Focused mainly on | Generalize model to multi-
Schuszter production CPU and | reduction in | container scaling; | resource prediction; test
(2022) software container usage | computing limited generalization | across diverse cloud
systems power; reduced | to other cloud setups | platforms; incorporate
carbon footprint dynamic workload patterns
Anupama, Simulated Hybrid SARIMA | SARIMA accurate | Single resource only; | Automate model selection;
Shivakumar | seasonal & | + LSTM/ARIMA | for seasonal | hybrid selection | extend to multi-resource
and non-seasonal workloads; LSTM | requires  normality | prediction; validate in large-
Nagaraja workloads outperformed tests; may not scale to | scale cloud environments
(2021) ARIMA for | large systems
irregular
workloads
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Ntambu Sampled VM | OCSVM / | High  Fi-scores | Focused on anomaly | Integrate anomaly detection
and workload Isolation Forest - | (OCSVM: 0.97 | detection, not | with predictive resource
Adeshina traces anomaly hourly, 0.89 | proactive prediction; | allocation; extend to multi-
(2021) detection daily) limited to CPU resource, real-time
monitoring
Yeung et al. | GPU DL Graph | RMSLE = 0.154; | Only GPU considered; | Develop multi-resource
(2020) workloads of | Prediction - | improved  GPU | requires = workload | prediction; enable prediction
DL models predicts GPU | cluster utilization | graph info; does not | without detailed workload
usage up to 61.5% include CPU/memory | graph; support
heterogeneous cloud
workloads
Abdullah et | BitBrain, SVR (RBF kernel) | Accuracy Offline  evaluation; | Apply deep learning/hybrid
al., (2020) PlanetLab, - predicts multi- | improved  4%- | scalability issues for | approaches for real-time
Google resource usage 16%; error | large datasets; | multi-resource prediction;
Cluster reduced 8%- | temporal correlations | enhance scalability; model
Workload 60% not fully captured temporal dependencies
Traces

III. METHODOLOGY

The proposed methodology focuses on building an efficient predictive framework for resource utilization in scalable cloud
systems, as presented in Figure 1. To guarantee data consistency, quality, and appropriateness for model training, it starts with
data preparation, which includes crucial procedures including data cleaning, feature engineering, and feature scaling. The
Microsoft Azure Traces 2017 dataset is then utilized, containing real-world telemetry data including CPU usage, memory, and
network traffic, which are key indicators of system performance. In order to assess the model's performance, the data is first
preprocessed, after which it is partitioned into one group of 90% training data and the other group of 10% testing data. Two
prediction models that maintain linear trends and time-dependent correlations in data include Linear Regression (LiR) and
Bidirectional Long Short-Term Memory (Bi-LSTM). The model’s performance is measured on the basis of R%, RMSE, MSE and
MAE, which are good measures of the performance of the models. The final products contribute to enhanced resource management
and are proactive in dynamic computing in the clouds.

Dataset Split
90% Train set,
10% Test set

v

Evaluation metrics: R, RMSE, MSE

and MAE

Final Result

Figure 1: Proposed Predictive Framework for Resource Utilization in Scalable Cloud Systems

A. Data Collection

The Microsoft Azure Traces 2017 data is an example of cloud telemetry data trace of real-life data collected in the Azure data
centres, which entails major measurements like CPU, network traffic, memory and disk I/O data. It provides the time series data
about the performance of the virtual machine, and one can utilize the findings to create workload prediction and resource
optimization forecasting models. This research primarily relies on the data of CPU usage to forecast the trends of CPU usage and
network transmission. This information facilitates the ideal dynamic cloud modelling behavior that increases the effectiveness and
performance of large-scale cloud computing systems.
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Figure 2: CPU Utilization Trends in the Dataset

Figure 2 shows patterns of CPU utilization of the Microsoft Azure Traces, which were captured in January 2017. It displays the
CPU utilization as time passes in three different ways: minimal (blue), maximum (orange), and average (green). The x-axis is the
time, whereas the y-axis is the CPU utilization in millions. The data shows periodic changes that can be observed with obvious
peaks and troughs that indicate repetitive workload patterns common in cloud-based operations. The maximum CPU usage
displays higher spikes, indicating varying demand intensity, while the average and minimum values remain relatively stable,
reflecting consistent background activity and efficient resource management within the Azure infrastructure.

B. Data Preprocessing
The preprocessing of data is an important process in the process of data analysis and ML that requires cleaning, transforming,
and structuring raw data into an appropriate format. It guarantees the quality of data, consistency, and model training preparation.

C. Data Cleaning
Data cleaning is an important pre-processing task that is designed should improve the dataset's consistency, quality, and
dependability before developing a model [23]. The procedure of cleaning is provided below:
e Treat missing data to ensure that data is not lost and also prevent the risk of bias in the model.
e Identify and eliminate outliers that can violate model performance.
e Eliminate the inconsistency or duplication of entries to maintain integrity of the data.
e Reformat data and format to have consistency in each feature.

D. Feature Engineering

The feature engineering is a critical process where raw data are selected and transformed into useful inputs that enhance better
model performance and prediction accuracy. CPU usage, network throughput and timestamp are critical attributes that are taken
into consideration in this research to ensure important patterns in resource use are captured. In the case of categorical variables,
they are converted to appropriate numerical data to make them compatible with ML and DL models. Additional time characteristics
are obtained to enhance trend analysis that ultimately leads to improved learning and forecasting of resource requirements of the
model.

E. Feature Scaling
The technique of normalizing feature scaling refers to the variety of characteristics or independent variables in a dataset by

means of data preparation. It makes sure that the attributes play an equal role in model training, and features with bigger

magnitudes do not take over smaller ones [24]. Minmax normalization is one such method, and it normalizes the information to

a certain range, often [0,1]. As displayed by Equation (1), the normalized data sample x', can be obtained using the original data

sample x:

1 (X—Xmin)

x' =
(Xmax —Xmin)

X (xnew_max - xnew_min) + xnew_min (1)

F. Data Splitting
In a 90:10 ratio, the dataset is divided into training and testing subsets, with 90% going towards model training and 10%
towards model testing, in order to precisely evaluate the model's generalization potential, accuracy, and performance.

G. Proposed Linear Regression Model

A statistical method called linear regression is used to describe the connection between one or a criterion or response variables
(also called a dependent variable) plus additional predictor variables (sometimes called independent variables). The following
Equation (2) represents the model.

Yy =by+byxx (2)
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where x is the predictor value, b, is the line's slope, b, is the intercept, and indicates the fitted or estimated value [25]. The
anticipated value of ¥ when the predictor assumes a value of x=0 is known as the intercept, whereas the slope may be used to
calculate how much the predictor affects the dependent variable for each unit of predictor change. The least squares approach is
used to estimate the coefficients b, and b, in regression, which minimises the number of squares that the difference between
actual and predicted values deviates from. They are calculated by the following Equations (2&4):

b=y —by*X (3)

_ I i)
b= S (4)
In which n represents the observations, the average of the predictor variable is denoted as X and the average of the response
variable is denoted as y. LR is a simple but effective method of understanding associations and estimation, which is the foundation

of most sophisticated prediction modelling methods.

H. Proposed BiLSTM Model

The two parallel LSTMs that make up Bidirectional Long Short-Term Memory (BiLSTM) process data in an anticlockwise and
clockwise manner, respectively. The latent state of BiLSTM, which is the sum of the two before and after states, has the potential
to hide the present and future states at any given moment [26]. LSTM usually consists of three gates (forget, input, and output) at
any given sequence time t. In this investigation, the state memory unit Ct—1 and the hidden state h;_, of the end sequence were
added to the forgetting gate together with the current input vector x,. The forget gate output, f;, is produced using a sigmoid
activation function; the calculation Equation (5) is:

ﬁ- = O-(tht—l + fol' + bf) (5)

where the weights are represented by Wy, Uf, and the bias by b. There are two components to the input gate: The sigmoid
activation function is utilised in the first component [27], and its outcome is i;. The tanh function is used in the second portion,
and the result is a,. When both elements are combined, it is determined which vector must be maintained in the state memory
unit. The formula for calculation is shown in Equation (6-7):

it = O-(tht—l + Uixi + bl) (6)
a; = tanh(W h._; + Uyx; + by) )

The first, Ct-1, is the product of the forget gate’s output ft, and the second, the product of the input gate’s outputs i, and
a;.The Equation (8) are given below:

C = C_10Of; +1;Oay 8)

The Hadamard product is represented by (. There are two components to the concealed state h, update. Equation (9&10)
expresses the tanh activation function and the hidden state C,, which constitute the second section.

0, = c(Wyhe_y + Upx, + by) (9)

h, = o,tanh ®(C,) (10)

This enables the prediction of the final two LSTMs' output, the subsequent temporal output. In Figure 3, the BiLSTM structure
is displayed.

X it I

[ “tanh
; |

Figure 3: Schematic Diagram of Bilstm Structure [28]
I. Performance Metrics
In order to assess the process's quality and the predictability of the outcomes, assessing the prediction model's performance is
crucial. A number of performance metrics are frequently employed to assess the model's precision and predictive ability. These
measures are determined using the following formulas:
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1) Mean Squared Error (MSE)

The MSE is a way to find the average of the squares of the errors [29]. In this scenario, the difference between the estimated
and actual amounts is the error. It represents the estimator's quality measure and is sometimes referred to as the risk function.
Equation (11) expresses the MSE function.

1
MSE = Z:l:l(yi - p)? (11)
where y; is the actual value, n is the quantity of observations and the anticipated value, p;. The function's return value is always
non-negative and preferably greater than o.

2) Root Mean Squared Error (RMSE)
The RMSE is the standard deviation of the residuals, which is the difference between the actual and predicted values. It displays
the degree to which the data and the best-fit line correspond. Equation (12) provides an expression for the RMSE function.

RMSE = \/,ll Z?zl(}’i —p;)? (12)

3) R-squared
R2 is the coefficient of determination, often referred to as the goodness function [30], This evaluates the regression's accuracy
in predicting the real data points. Equation (13), which expresses the R2 function.

2 _ 4 _ Ziyi-p)?
RE=1 Li(i—A)? (13)

where A is the mean of the observed or anticipated data. Perfect match to the data is indicated by a value nearer 1.

4) Mean Absolute Error (MAE)
The mean absolute error (MAE) is the difference between the estimated and actual values. There is never a value that is less
than zero. Equation (14) shows how to find the MAE:

1
MAE = — “alpi — il (14)

A thorough assessment of prediction models is made possible by these indicators taken together, allowing for objective
comparison and selection of the most effective approach for a given dataset.

IV. RESULT ANALYSIS AND DISCUSSION

The proposed study's foundation utilizes ML to investigate the proactive use of resources in scalable cloud systems. The two
models, Linear Regression and BiLSTM, were coded in Python using scikit-learn (LR) and TensorFlow/Keras (BiLSTM), and
training and testing were done in Google Colab. Table II provides a comparative analysis of their performance measures, where
LR has better R2 (0.9834) and fewer errors (RMSE: 0.0170, MSE: 0.0003, MAE: 0.0129) than BiLSTM (R2: 0.9733, RMSE: 0.0217,
MSE: 0.0005, MAE: 0.0170). These outcomes suggest that Linear Regression is more accurate and efficient to compute, and should
thus be used as an alternative in proactive management of cloud resources, and to aid in optimum scalability in the dynamic cloud
environments.

Table 2: Performance comparison of proposed linear regression and BILSTM models for resource utilization prediction

Metrics Linear Regression BiLSTM
R2 Score 0.9834 0.9733
RMSE 0.0170 0.0217
MSE 0.0003 0.0005
MAE 0.0129 0.0170
1e6 Real vs Predicted values of LiR
1.5 A
1.4
[
S
]
>
a.
(&)
1.2
1.1 —— Real
—— Predicted
12:00 00:00 12:00 00:00 12:00
29-Jan 30-Jan

2017
timestamp

Figure 4. Comparison of Real vs. Predicted CPU Utilization using Linear Regression Over Time
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Figure 4 illustrates the performance of a predictive model for CPU Utilization over a period spanning approximately two and a
half days, from late January 28 to early January 31, 2017. The actual (real) CPU utilization levels are shown by the blue line,
measured on the y-axis, while the model's expected values are displayed by the red line. The graph displays a clear diurnal pattern
in CPU usage, with peaks occurring around midday and minimums near midnight each day. More importantly, the predicted values
(red line) follow the actual ones (blue line) in the observed timestamps, which signifies the substantial efficiency of the model to
account for both the small variations in resource utilization and the high-level periodic patterns.

1e6 Real vs Predicted values of Bi-LSTM
1.45
1.40 A
1.35
[ =
=]
g 1.30
5
3 125
a.
(&)
1.20 A
1.15 A
1.10 —— Real
—— Predicted
12:00 00:00 12:00 00:00 12:00
29-Jan 30-Jan
2017
timestamp

Figure 5. Comparison of Real vs. Predicted CPU Utilization using Bi-LSTM Over Time

Figure 5 demonstrates the high-performance rate of predicting CPU utilization using a neural network model for Bi-LSTM.
The blue line (Real) during the timeframe between late January 28 and early January 31, 2017, indicates the actual CPU usage with
a very high level of diurnal periodicity, with a high level of utilization at midday. The real values are well tracked by the red line
(Predicted), both in the cyclical ups and downs, and at the levels of most of the smaller fluctuations. The near correspondence
between the actual and projected numbers indicates the Bi-LSTM model's high fidelity in modelling the complex temporal
dependencies and patterns in resource utilization, making it a robust predictor for operational planning and resource management.

Error Rate of the LiR and BiLSTM for
Resource Utilization

0.025

0.02

0.015

0.01

0.005

0
MSE

Linear Regression ™ BiLSTM

Figure 6: Error Rates Comparison of LiR and Bi-LSTM Models

The performance of the two prediction models, Bi-LSTM and Linear Regression (LiR), is contrasted in Figure 6. Three standard
error measurements serve as the basis for the comparison MAE, MSE, and RMSE. The chart shows that for RMSE and MAE, the
Bi-LSTM (orange bars) exhibits a higher error rate (approximately 0.022 and 0.017, respectively) than Linear Regression (blue
bars) (approximately 0.017 and 0.013, respectively). Conversely, for the MSE metric, both models show very low and nearly equal
error rates, close to zero. The overall visualization suggests that, based on RMSE and MAE, the simpler Linear Regression model
performed slightly better than the complex Bi-LSTM in predicting resource utilization.

A. Comparative Analysis & Discussion

This section presents a performance comparison of the proposed models, Linear Regression and BiLSTM, for predicting
resource utilization in scalable cloud systems. Their results are summarized in Table III with performance that is compared to the
current approaches like Autoregressive Neural Network (RMSE: 0.61449), SVM (0.504) and VAR-GRU (0.3295). These two
proposed models are much better than these more complex and traditional approaches and achieve a significantly smaller value
of 0.0170 of RMSE when using Linear Regression and 0.217 when using BiLSTM. Linear Regression is more accurate and faster to
calculate as compared to BiLSTM. These results suggest that the proposed models can be highly helpful to make relevant and valid
predictions that are capable of actively managing resources and factors that make cloud-based systems most efficient in the context
of scalability.
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Table 3: Performance comparison of proposed models and existing approaches for resource utilization prediction

Model RMSE
Autoregressive Neural Network([31] 0.61449
SVM[32] 0.504
VAR-GRU[33] 0.3295
Linear Regression 0.0170
Bi-LSTM 0.0217

The results demonstrate that the proposed models, Linear Regression (LiR) and Bi-LSTM, are capable of predicting cloud
resource usage with slightly better accuracy and increasing computational efficiency; however, Bi-LSTM can adhere to complex
time variations. The suggested models' superiority over Autoregressive Neural Network, SVM, and VAR-GRU suggests their high
robustness and dependability. The results demonstration that the opportunity to dynamically allocate resources to minimize over-
allocation and operating expenses is provided by active prediction. The LiR is a lightweight framework that enables quick
predictions, while Bi-LSTM provides long dependencies, making the framework adaptable to various large-scale cloud
deployments.

V. CONCLUSION AND FUTURE SCOPE

This is needed to get a correct forecast on how the cloud resources utilized to provide maximum performance, low price and
reliability of the system. Two models were developed based on them, and they are: Linear Regression (LiR) and Bi-LSTM, that was
used to model both linear and temporal patterns of workload. The comparison was done with an Autoregressive neural network,
SVM and VAR-GRU, where the measures of evaluation are R%, RMSE, MSE, and MAE. LiR achieved R? = 0.9834, RMSE = 0.0170,
MSE = 0.00029, and MAE = 0.0125, while Bi-LSTM achieved R? = 0.9733, RMSE = 0.0217, MSE = 0.00047, and MAE = 0.0168,
outperforming the comparison models. LiR is a lightweight and computationally efficient model, and Bi-LSTM is successful at
capturing the time dynamics, and the framework is capable of scaling to real-time. This form of predictive solution facilitates
proactive allocation of resources, minimizes over-providing of resources as well and enhances the dynamic cloud environments'
cost-effectiveness. However, in the future, prediction will be extended to other resources, such as memory, network, and GPU, to
allow managing multiple resources holistically. Further improvements will consider adaptive ensemble procedures that
incorporate both statistical and DL algorithms and incorporate reinforcement learning to make completely autonomous scaling
choices. Scalability, resilience, and practical applicability is going to be tested in different types of production-quality cloud
structures and deployed in real time in order to provide a solid baseline of intelligent, self-adaptive cloud resource management
and optimization.
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