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Abstract — Cloud computing's unexpected and dynamic workload fluctuations, which have a substantial influence on 
system performance, operating costs, and user experience, make efficient and scalable resource management an ongoing 
problem. To address these challenges, this study proposes a proactive resource utilization prediction framework leveraging 
machine learning to enable adaptive, intelligent, and timely resource allocation in cloud environments. The framework 
utilizes the Microsoft Azure Traces 2017 dataset, which provides realistic telemetry data, to accurately forecast CPU usage 

trends. A comprehensive preprocessing pipeline—including data cleaning, feature engineering, and feature scaling—ensures 
high-quality input for model training and reliable predictive performance. Two proposed models, Linear Regression (LiR) 
and Bidirectional Long Short-Term Memory (Bi-LSTM), are employed to capture both linear patterns and complex temporal 
dependencies in data. For benchmarking, established comparison models—Autoregressive Neural Network, SVM, and VAR-
GRU—are evaluated. Performance metrics include R², RMSE, MSE, and MAE. LiR achieved R² = 0.9834, RMSE = 0.0170, 
MSE = 0.00029, and MAE = 0.0125, while Bi-LSTM achieved R² = 0.9733, RMSE = 0.0217, MSE = 0.00047, and MAE = 
0.0168, clearly outperforming the comparison models. Future work will focus on extending the framework to multi-
resource forecasting, incorporating memory, network, and GPU metrics, and further enhancing cost-effectiveness and 
adaptive scaling in large-scale cloud environments. 

Keywords—Resource Management, Machine Learning, Resource Utilization, Proactive Scaling, Resource Allocation, Cloud 
Computing. 

I. INTRODUCTION 
The new digital infrastructure now requires cloud computing as a component, changing the way organizations and individuals 

retrieve, store, and manipulate data. It provides on-demand access to resources, flexibility and affordable solutions in different 
fields, such as scientific research, engineering and business processes [1][2]. The actual strength of cloud systems is scalability and 
elasticity since the resources may be expanded or reduced according to the demand[3]. However, there is the problem of efficient 
use of resource. Also, the dynamic, unpredictable, and heterogeneous nature of workloads grows, and the methods of allocating 
jobs to employees become increasingly less realistic, leading to inefficiency and performance bottlenecks [4]. 

The dynamic and heterogeneous nature of workloads in cloud deployments means that the requirements of the resources 
continuously fluctuate, and many of the changes are normally not predictable manually [5]. The ineffective allocation of resources 
occurs because control of this variability is done by inflexible rules or manual actions. The low resource utilization levels in the 
present-day data centers can impact the high availability levels of infrastructures that resulting in inefficiencies in operations and 
high costs of energy. A solution to these problems [6] is to proactively manage the resources. In the prospect of the future resource 
demands, optimization of performance, decrease of the energy wastage, and operational costs are possible, which leads to the 
stabilization of the services and cost efficiency. 

The traditional or reactive approach to resource allocation, such as threshold-based monitoring and rule-based scaling, does 
not apply well when it comes to the modification of rapidly changing workloads. The over- or under-provisioning may lead to the 
system performance decline, breach of service-level agreements, and avoidable expenses and energy consumption, respectively. 
The existence of such problems points to one of the biggest shortcomings of current cloud management policies. The point is that 
it is hard to foresee the use of resources like memory, bandwidth, and CPU, and storage in a scalable manner [7][8]. An appropriate 
solution to this issue can help make systems in a large-scale cloud setup cost-efficient and reliable[9]. 

Cloud providers are not left behind as they strive to solve these problems using smart and automated resource management 
procedures. Being predictive, smart solutions forecast demand shifts based on historical and real-time usage information and 
assign resources to them [10][11]. This not only enhances performance and availability, this also brings about cost-efficient 
operations and reduced cost of operation. More precise forecasting mechanisms are also quite handy in improving improved 
scheduling, load balancing and service level assurance that in the long run, would translate to improved end-user quality of 
service[12][13]. 
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The subject of machine learning (ML) has also become a viable issue that can be used to model nonlinear and complex 
behaviours of a system. ML also allows the proactive supply of resources instead of a response to historical utilization and present 
utilization data[14]. With this change, it is possible to predict the workload, the strategies plans of scaling down and minimized 
waste [15][16]. The ML approaches have already managed to predict the use of cloud resources by being successful in predictive 
autoscaling, anomaly detection and capacity planning and therefore it would best suit the use of the methods to predict the use of 
them. ML is deployed to make the providers more scaled, cost-effective and reliable leading to smart and data-driven cloud 
management. 

A. Motivation and Contributions of the Study 
The rapid evolution of cloud computing, service providers are facing more challenges of effectively handling the dynamic 

workloads within scalable infrastructures. Unexpected spikes in the use of resources may cause performance declines, higher 
operating costs and poor user experiences.  The conventional methods of statical allocation of resources generally cannot respond 
to these changes in real-time, and, hence, either over-provision or under-provide resources. Another potentially useful solution is 
the machine learning-based predictive analytics because this tool enables making decisions proactively. The ability of the cloud 
systems to predict resource usage allows them to optimize the performance, lower expenses while upholding service level 
agreements (SLAs). This study is guided by the need to establish a smart, data-oriented system that has the potential to forecast 
resource needs and provide scalable, efficient, and dynamic resource management to the modern cloud-based environment. The 
current study adds the following aspects: 
• They propose a robust methodology to forecast the use of resources in cloud systems which involves pre-processing of data, 

feature engineering of data, and multifaceted models of ML. 
• Bidirectional Long Short-Memory (Bi-LSTM) and Linear Regression (LiR) are employed to identify both linear trends and 

complex time-related trends of the usage of resources to ensure a high degree of prediction accuracy. 
• The framework is applied to the Microsoft Azure Traces 2017 data, which provides the real telemetry data, thus, the predictions 

in the dynamic cloud environment become more feasible. 
• The models are thoroughly verified with the assistance of the different metrics (R², RMSE, MAE) and they present the full 

picture of predictive accuracy and reliability. 
• The forecasts made by the framework can be used in pre-emptive scaling and provision of cloud services and reducing 

operation costs, preventing service outages, and increasing the overall efficiency of the systems. 

B. Justification and Novelty of paper 
To establish the sense of the necessity of adequate and effective management of cloud resources, the analysis suggests a dual-

model architecture that combines Linear Regression (LiR) and to forecast both linear and multidimensional time series tendencies 
in cloud resource utilization, Bi-LSTM is used. The proposed models are compared to Autoregressive Neural Network, SVM, and 
VAR-GRU, compared to the current methods and demonstrate higher qualities of prediction. The real-world usage of the actual 
telemetry data would prove to be dependable and applicable in real-time in mobile cloud scenarios. A thorough analysis based on 
R², RMSE, MSE, and MAE emphasize accuracy, effectiveness, and strength to support the clever, flexible, and proactive use of 
resources and promote performance and cut down the costs of operation. 

C. Organization of the paper 
The paper is structured as follows: Section II examines relevant cloud resource management work. Section III presents the 

proposed methodology, detailing data pre-processing and the implementation of ML models. Section IV discusses the experimental 
configuration and the prediction models' performance outcomes. Finally, Section V concludes the study, highlighting key findings, 
practical implications, and potential directions for future research. 

II. LITERATURE REVIEW 
The evaluated research focus on CPU, GPU, and multi-resource workloads and explore several machine learning methods to 

forecast cloud resource utilization. Methods such as DCRNN, RNN, SARIMA-LSTM and SVR maximize forecasting, but they have 
scalability and real-time adaptation issues. 

Al-Asaly et al. (2022) describe the challenges associated with the forecasting of future CPU resource demands of Software as 
a Service (SaaS) providers with changing workloads and the existence of multiple virtual machines (VMs). Their concept is an 
advanced DL technique that uses a diffusion convolutional recurrent neural network (DCRNN) to enhance workload prediction 
and provide cloud resources. This model's objective is to increase predicting accuracy under varying workload patterns and was 
tested on the real-world data of CPU usage on Planet Lab. It is found that results are greatly improved when compared to the 
current models, with the average absolute percentage inaccuracy was 0.18 and the root-mean-square error was 2.40 [17]. 

Cioca and Schuszter (2022) discuss the benefits of DL time-series analysis to use fewer computing resources, in the direction 
of greener data centres. They state that contemporary software development systems, such as container technology use like 
Kubernetes and Docker, tend to consume substantial resources, even when they are not active. The authors report a predictive 
system designed on the data and parameters of actual production systems in CERN that uses an RNN model that uses previous 
data to forecast future resource usage. This allows intelligent machine/container scaling down when it is not in use. Their results 
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show possible carbon footprint savings in computing services, and CPU utilization improvement of up to 60-80% over classic 
approaches, which do not go deep in terms of historical analysis [18] 

Anupama, Shivakumar and Nagaraja (2021) describe a new method of predicting workloads on clouds, which is directed at 
optimizing the use of resources through efficient resource administration plans. In order to manage workloads that are both 
seasonal and non-seasonal, the authors suggest a hybrid prediction model that blends machine learning and statistics. Seasonal 
data is estimated using the Seasonal Auto Regressive Integrated Moving Average (SARIMA) model, whereas non-seasonal 
workloads are estimated using the Autoregressive Integrated Moving Average (ARIMA) and LSTM networks depending on the 
results of the normality test. The predictive model predicts the number of resources needed in different periods and reveals that 
the LSTM model is much superior to ARIMA in forecasting irregular patterns and SARIMA in predicting future resource 
requirements. The study assists cloud service providers to balance workloads in order to avoid resource over or under provisioning 
[19]. 

Ntambu and Adeshina (2021) describe the major problems of security in cloud computing, especially because it incorporates 
multiple technologies, such as networks and virtualization. They also mention current security methods including intrusion 
detection and two-factor authentication, but they warn that there is a chance that hostile people might get access to virtual 
machines (VMs). The recommendations offered by the authors are proactive monitoring and a model of anomaly detection which 
operates on the Virtual machine (VM) resources and applies the ML algorithms to the work of One-Class Support Vector Machine 
and Isolation Forest (OCSVM).   The average F1-scores for hourly and daily time series are 0.97 and 0.89, respectively, indicating 
that OCSVM performed better than IFS in time series categorization [20]. 

Yeung et al. (2020) Discuss the importance of considering the utilization of GPUs in DL applications to optimize resource 
utilization and cloud cost-benefit evaluation.  The current approaches of measuring GPU usage focus on online profiling of a single 
isolated device, i.e., a single task, and need separate profiling, which results in underutilization and reduced service capacity. In 
this regard, the authors suggest a prediction engine, which can predict the use of the GPUs in terms of multiple DL workloads 
without requiring a vast amount of online profiling. They make these predictions by extracting the data from the model 
computation graph. The results indicate that the prediction engine's Root Mean Squared Logarithmic Error (RMSLE) is 0.154, 
allowing DL schedulers to optimize the use of the GPU clusters by a maximum of 61.5 [21]. 

Abdullah et al. (2020) In order to reduce waste, highlight how cloud computing uses resources. Current methods use resource 
allocation and virtual machine consolidation, among other resource management systems. The significant degree of 
unpredictability in cloud resource utilization necessitates efficient prediction techniques. This study proposed the Support Vector 
Regression Technique (SVRT), A technique to supervised statistical learning for estimating the utilization of multi-attribute host 
resources. Training was conducted using the Sequential Minimal Optimization Algorithm using the Radial Basis Function kernel, 
the technique is found to be meaningfully better on prediction error (4-16% better) and training error (8-60% better) on real-
world workloads of BitBrain, PlanetLab, and Google Cluster Workload Traces [22]. 

The Table I shows previous studies of workload prediction, which identify the methods, datasets, and gaps in multi-resource 
forecasting, scalability in real time, handling heterogeneous workloads, and sustainable optimization. 

 
Table 1: Existing Studies on machine learning-based workload prediction or cloud resource utilization

References Dataset ML Approach Key Outcomes Limitations Future Directions 

Al-Asaly et 
al. (2022) 

PlanetLab 
CPU usage 

traces 

DCRNN – 
captures 

temporal and VM 
correlations 

MAPE = 0.18, 
RMSE = 2.40; 

improved 
forecasting 
accuracy 

Single resource (CPU) 
only; limited real-

time testing; VM 
correlations not fully 
modeled 

Extend to multi-resource 
forecasting; integrate 

adaptive real-time 
prediction; test under 
heterogeneous workloads 

Cioca and 
Schuszter 
(2022) 

CERN 
production 
software 
systems 

RNN – predicts 
CPU and 
container usage 

60%-80% 
reduction in 
computing 
power; reduced 
carbon footprint 

Focused mainly on 
container scaling; 
limited generalization 
to other cloud setups 

Generalize model to multi-
resource prediction; test 
across diverse cloud 
platforms; incorporate 
dynamic workload patterns 

Anupama, 

Shivakumar 
and 
Nagaraja 
(2021) 

Simulated 

seasonal & 
non-seasonal 
workloads 

Hybrid SARIMA 

+ LSTM/ARIMA 

SARIMA accurate 

for seasonal 
workloads; LSTM 
outperformed 
ARIMA for 
irregular 
workloads 

Single resource only; 

hybrid selection 
requires normality 
tests; may not scale to 
large systems 

Automate model selection; 

extend to multi-resource 
prediction; validate in large-
scale cloud environments 
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Ntambu 

and 
Adeshina 
(2021) 

Sampled VM 

workload 
traces 

OCSVM / 

Isolation Forest – 
anomaly 
detection 

High F1-scores 

(OCSVM: 0.97 
hourly, 0.89 
daily) 

Focused on anomaly 

detection, not 
proactive prediction; 
limited to CPU 

Integrate anomaly detection 

with predictive resource 
allocation; extend to multi-
resource, real-time 
monitoring 

Yeung et al. 
(2020) 

GPU 
workloads of 
DL models 

DL Graph 
Prediction – 
predicts GPU 
usage 

RMSLE = 0.154; 
improved GPU 
cluster utilization 
up to 61.5% 

Only GPU considered; 
requires workload 
graph info; does not 
include CPU/memory 

Develop multi-resource 
prediction; enable prediction 
without detailed workload 
graph; support 
heterogeneous cloud 
workloads 

Abdullah et 
al., (2020) 

BitBrain, 
PlanetLab, 
Google 
Cluster 
Workload 
Traces 

SVR (RBF kernel) 
– predicts multi-
resource usage 

Accuracy 
improved 4%-
16%; error 
reduced 8%-
60% 

Offline evaluation; 
scalability issues for 
large datasets; 
temporal correlations 
not fully captured 

Apply deep learning/hybrid 
approaches for real-time 
multi-resource prediction; 
enhance scalability; model 
temporal dependencies 

III. METHODOLOGY 
The proposed methodology focuses on building an efficient predictive framework for resource utilization in scalable cloud 

systems, as presented in Figure 1. To guarantee data consistency, quality, and appropriateness for model training, it starts with 
data preparation, which includes crucial procedures including data cleaning, feature engineering, and feature scaling. The 
Microsoft Azure Traces 2017 dataset is then utilized, containing real-world telemetry data including CPU usage, memory, and 
network traffic, which are key indicators of system performance. In order to assess the model's performance, the data is first 
preprocessed, after which it is partitioned into one group of 90% training data and the other group of 10% testing data. Two 
prediction models that maintain linear trends and time-dependent correlations in data include Linear Regression (LiR) and 
Bidirectional Long Short-Term Memory (Bi-LSTM). The model’s performance is measured on the basis of R², RMSE, MSE and 
MAE, which are good measures of the performance of the models. The final products contribute to enhanced resource management 
and are proactive in dynamic computing in the clouds. 

                                                    
Figure  1: Proposed Predictive Framework for Resource Utilization in Scalable Cloud Systems 

A. Data Collection 
The Microsoft Azure Traces 2017 data is an example of cloud telemetry data trace of real-life data collected in the Azure data 

centres, which entails major measurements like CPU, network traffic, memory and disk I/O data. It provides the time series data 
about the performance of the virtual machine, and one can utilize the findings to create workload prediction and resource 
optimization forecasting models. This research primarily relies on the data of CPU usage to forecast the trends of CPU usage and 
network transmission. This information facilitates the ideal dynamic cloud modelling behavior that increases the effectiveness and 
performance of large-scale cloud computing systems. 
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Figure 2: CPU Utilization Trends in the Dataset 

Figure 2 shows patterns of CPU utilization of the Microsoft Azure Traces, which were captured in January 2017. It displays the 
CPU utilization as time passes in three different ways: minimal (blue), maximum (orange), and average (green). The x-axis is the 
time, whereas the y-axis is the CPU utilization in millions. The data shows periodic changes that can be observed with obvious 
peaks and troughs that indicate repetitive workload patterns common in cloud-based operations. The maximum CPU usage 
displays higher spikes, indicating varying demand intensity, while the average and minimum values remain relatively stable, 
reflecting consistent background activity and efficient resource management within the Azure infrastructure. 

B. Data Preprocessing 
The preprocessing of data is an important process in the process of data analysis and ML that requires cleaning, transforming, 

and structuring raw data into an appropriate format. It guarantees the quality of data, consistency, and model training preparation. 

C. Data Cleaning 
Data cleaning is an important pre-processing task that is designed should improve the dataset's consistency, quality, and 

dependability before developing a model [23]. The procedure of cleaning is provided below: 
• Treat missing data to ensure that data is not lost and also prevent the risk of bias in the model. 
• Identify and eliminate outliers that can violate model performance. 
• Eliminate the inconsistency or duplication of entries to maintain integrity of the data. 
• Reformat data and format to have consistency in each feature. 

D. Feature Engineering 
The feature engineering is a critical process where raw data are selected and transformed into useful inputs that enhance better 

model performance and prediction accuracy. CPU usage, network throughput and timestamp are critical attributes that are taken 
into consideration in this research to ensure important patterns in resource use are captured. In the case of categorical variables, 
they are converted to appropriate numerical data to make them compatible with ML and DL models. Additional time characteristics 
are obtained to enhance trend analysis that ultimately leads to improved learning and forecasting of resource requirements of the 
model. 

E. Feature Scaling 
The technique of normalizing feature scaling refers to the variety of characteristics or independent variables in a dataset by 

means of data preparation. It makes sure that the attributes play an equal role in model training, and features with bigger 
magnitudes do not take over smaller ones [24]. Minmax normalization is one such method, and it normalizes the information to 
a certain range, often [0,1]. As displayed by Equation (1), the normalized data sample x', can be obtained using the original data 
sample x: 

 𝑥′ =
(𝑥−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛)
× (𝑥𝑛𝑒𝑤_𝑚𝑎𝑥 − 𝑥𝑛𝑒𝑤_𝑚𝑖𝑛) + 𝑥𝑛𝑒𝑤_𝑚𝑖𝑛                    (1) 

F. Data Splitting 
In a 90:10 ratio, the dataset is divided into training and testing subsets, with 90% going towards model training and 10% 

towards model testing, in order to precisely evaluate the model's generalization potential, accuracy, and performance. 

G. Proposed Linear Regression Model 
A statistical method called linear regression is used to describe the connection between one or a criterion or response variables 

(also called a dependent variable) plus additional predictor variables (sometimes called independent variables).  The following 
Equation (2) represents the model. 

𝑦 = 𝑏0 + 𝑏1 ∗ 𝑥                                  (2) 
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where x is the predictor value, 𝑏0 is the line's slope, 𝑏1 is the intercept, and indicates the fitted or estimated value [25]. The 
anticipated value of 𝑦̂ when the predictor assumes a value of x=0 is known as the intercept, whereas the slope may be used to 
calculate how much the predictor affects the dependent variable for each unit of predictor change. The least squares approach is 
used to estimate the coefficients 𝑏0 and 𝑏1 in regression, which minimises the number of squares that the difference between 
actual and predicted values deviates from. They are calculated by the following Equations (2&4): 

 𝑏0 = 𝑦̅ − 𝑏1 ∗ 𝑥̅ (3) 

 𝑏1 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

 (4) 

In which n represents the observations, the average of the predictor variable is denoted as 𝑥̅  and the average of the response 
variable is denoted as 𝑦̅. LR is a simple but effective method of understanding associations and estimation, which is the foundation 
of most sophisticated prediction modelling methods. 

H. Proposed BiLSTM Model 
The two parallel LSTMs that make up Bidirectional Long Short-Term Memory (BiLSTM) process data in an anticlockwise and 

clockwise manner, respectively. The latent state of BiLSTM, which is the sum of the two before and after states, has the potential 
to hide the present and future states at any given moment [26]. LSTM usually consists of three gates (forget, input, and output) at 
any given sequence time 𝑡. In this investigation, the state memory unit 𝐶𝑡−1 and the hidden state ℎ𝑡−1  of the end sequence were 
added to the forgetting gate together with the current input vector 𝑥𝑡. The forget gate output, 𝑓𝑡 , is produced using a sigmoid 
activation function; the calculation Equation (5) is: 

 𝑓𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 + 𝑏𝑓) (5) 

where the weights are represented by 𝑊𝑓, 𝑈𝑓, and the bias by 𝑏𝑓. There are two components to the input gate: The sigmoid 

activation function is utilised in the first component [27], and its outcome is 𝑖𝑡 . The tanh function is used in the second portion, 
and the result is 𝑎𝑡 . When both elements are combined, it is determined which vector must be maintained in the state memory 
unit. The formula for calculation is shown in Equation (6-7): 

 𝑖𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑖𝑥𝑖 + 𝑏𝑖) (6) 

 

 𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎ℎ𝑡−1 + 𝑈𝑎𝑥𝑖 + 𝑏𝑎) (7) 

 

The first, 𝐶𝑡−1, is the product of the forget gate’s output 𝑓𝑡, and the second, the product of the input gate’s outputs 𝑖𝑡  and 
𝑎𝑡 .The Equation (8) are given below: 

 𝐶𝑡 = 𝐶𝑡−1⨀𝑓𝑡 + 𝑖𝑡⨀𝑎𝑡 (8) 

 

The Hadamard product is represented by ⊙. There are two components to the concealed state ℎ𝑡 update. Equation (9&10) 
expresses the tanh activation function and the hidden state 𝐶𝑡, which constitute the second section. 

 𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1 + 𝑈𝑜𝑥𝑡 + 𝑏𝑜) (9) 

 

 ℎ𝑡 = 𝑜𝑡tanh ⨀(𝐶𝑡) (10) 

This enables the prediction of the final two LSTMs' output, the subsequent temporal output.  In Figure 3, the BiLSTM structure 
is displayed. 

 
Figure 3: Schematic Diagram of Bilstm Structure [28] 

I. Performance Metrics 
In order to assess the process's quality and the predictability of the outcomes, assessing the prediction model's performance is 

crucial.  A number of performance metrics are frequently employed to assess the model's precision and predictive ability. These 
measures are determined using the following formulas: 
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1) Mean Squared Error (MSE) 
The MSE is a way to find the average of the squares of the errors [29]. In this scenario, the difference between the estimated 

and actual amounts is the error. It represents the estimator's quality measure and is sometimes referred to as the risk function. 
Equation (11) expresses the MSE function. 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑝𝑖)

2𝑛

𝑖=1
 (11) 

where 𝑦𝑖 is the actual value, 𝑛 is the quantity of observations and the anticipated value, 𝑝𝑖. The function's return value is always 
non-negative and preferably greater than 0. 

2) Root Mean Squared Error (RMSE) 
The RMSE is the standard deviation of the residuals, which is the difference between the actual and predicted values.  It displays 

the degree to which the data and the best-fit line correspond. Equation (12) provides an expression for the RMSE function. 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑝𝑖)

2𝑛

𝑖=1
 (12) 

3) R-squared 
R2 is the coefficient of determination, often referred to as the goodness function [30], This evaluates the regression's accuracy 

in predicting the real data points. Equation (13), which expresses the R2 function. 

 𝑅2 = 1 −
∑ (𝑦𝑖−𝑝𝑖)2

𝑖

∑ (𝑦𝑖−𝐴)2
𝑖

 (13) 

where A is the mean of the observed or anticipated data.  Perfect match to the data is indicated by a value nearer 1. 

4) Mean Absolute Error (MAE) 
The mean absolute error (MAE) is the difference between the estimated and actual values.  There is never a value that is less 

than zero.  Equation (14) shows how to find the MAE: 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑝𝑖 − 𝑦𝑖|

𝑛
𝑖=1  (14) 

A thorough assessment of prediction models is made possible by these indicators taken together, allowing for objective 
comparison and selection of the most effective approach for a given dataset. 

IV. RESULT ANALYSIS AND DISCUSSION 
The proposed study's foundation utilizes ML to investigate the proactive use of resources in scalable cloud systems. The two 

models, Linear Regression and BiLSTM, were coded in Python using scikit-learn (LR) and TensorFlow/Keras (BiLSTM), and 
training and testing were done in Google Colab. Table II provides a comparative analysis of their performance measures, where 
LR has better R2 (0.9834) and fewer errors (RMSE: 0.0170, MSE: 0.0003, MAE: 0.0129) than BiLSTM (R2: 0.9733, RMSE: 0.0217, 
MSE: 0.0005, MAE: 0.0170). These outcomes suggest that Linear Regression is more accurate and efficient to compute, and should 
thus be used as an alternative in proactive management of cloud resources, and to aid in optimum scalability in the dynamic cloud 
environments. 

Table 2: Performance comparison of proposed linear regression and BILSTM models for resource utilization prediction 

Metrics Linear Regression BiLSTM 

R2 Score 0.9834 0.9733 

RMSE 0.0170 0.0217 

MSE 0.0003 0.0005 

MAE 0.0129 0.0170 

 
Figure 4. Comparison of Real vs. Predicted CPU Utilization using Linear Regression Over Time 
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Figure 4 illustrates the performance of a predictive model for CPU Utilization over a period spanning approximately two and a 
half days, from late January 28 to early January 31, 2017. The actual (real) CPU utilization levels are shown by the blue line, 
measured on the y-axis, while the model's expected values are displayed by the red line. The graph displays a clear diurnal pattern 
in CPU usage, with peaks occurring around midday and minimums near midnight each day. More importantly, the predicted values 
(red line) follow the actual ones (blue line) in the observed timestamps, which signifies the substantial efficiency of the model to 
account for both the small variations in resource utilization and the high-level periodic patterns. 

 
Figure 5. Comparison of Real vs. Predicted CPU Utilization using Bi-LSTM Over Time 

Figure 5 demonstrates the high-performance rate of predicting CPU utilization using a neural network model for Bi-LSTM. 
The blue line (Real) during the timeframe between late January 28 and early January 31, 2017, indicates the actual CPU usage with 
a very high level of diurnal periodicity, with a high level of utilization at midday. The real values are well tracked by the red line 
(Predicted), both in the cyclical ups and downs, and at the levels of most of the smaller fluctuations. The near correspondence 
between the actual and projected numbers indicates the Bi-LSTM model's high fidelity in modelling the complex temporal 
dependencies and patterns in resource utilization, making it a robust predictor for operational planning and resource management. 

 
Figure 6: Error Rates Comparison of LiR and Bi-LSTM Models 

The performance of the two prediction models, Bi-LSTM and Linear Regression (LiR), is contrasted in Figure 6.  Three standard 
error measurements serve as the basis for the comparison MAE, MSE, and RMSE. The chart shows that for RMSE and MAE, the 
Bi-LSTM (orange bars) exhibits a higher error rate (approximately 0.022 and 0.017, respectively) than Linear Regression (blue 
bars) (approximately 0.017 and 0.013, respectively). Conversely, for the MSE metric, both models show very low and nearly equal 
error rates, close to zero. The overall visualization suggests that, based on RMSE and MAE, the simpler Linear Regression model 
performed slightly better than the complex Bi-LSTM in predicting resource utilization. 

A. Comparative Analysis & Discussion 
This section presents a performance comparison of the proposed models, Linear Regression and BiLSTM, for predicting 

resource utilization in scalable cloud systems. Their results are summarized in Table III with performance that is compared to the 
current approaches like Autoregressive Neural Network (RMSE: 0.61449), SVM (0.504) and VAR-GRU (0.3295). These two 
proposed models are much better than these more complex and traditional approaches and achieve a significantly smaller value 
of 0.0170 of RMSE when using Linear Regression and 0.217 when using BiLSTM. Linear Regression is more accurate and faster to 
calculate as compared to BiLSTM. These results suggest that the proposed models can be highly helpful to make relevant and valid 
predictions that are capable of actively managing resources and factors that make cloud-based systems most efficient in the context 
of scalability. 
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Table 3: Performance comparison of proposed models and existing approaches for resource utilization prediction 

Model RMSE 

Autoregressive Neural Network[31] 0.61449 

SVM[32] 0.504 

VAR-GRU[33] 0.3295 

Linear Regression 0.0170 

Bi-LSTM 0.0217 

The results demonstrate that the proposed models, Linear Regression (LiR) and Bi-LSTM, are capable of predicting cloud 
resource usage with slightly better accuracy and increasing computational efficiency; however, Bi-LSTM can adhere to complex 
time variations. The suggested models' superiority over Autoregressive Neural Network, SVM, and VAR-GRU suggests their high 
robustness and dependability. The results demonstration that the opportunity to dynamically allocate resources to minimize over-
allocation and operating expenses is provided by active prediction. The LiR is a lightweight framework that enables quick 
predictions, while Bi-LSTM provides long dependencies, making the framework adaptable to various large-scale cloud 
deployments. 

V. CONCLUSION AND FUTURE SCOPE 
This is needed to get a correct forecast on how the cloud resources utilized to provide maximum performance, low price and 

reliability of the system. Two models were developed based on them, and they are: Linear Regression (LiR) and Bi-LSTM, that was 
used to model both linear and temporal patterns of workload. The comparison was done with an Autoregressive neural network, 
SVM and VAR-GRU, where the measures of evaluation are R², RMSE, MSE, and MAE. LiR achieved R² = 0.9834, RMSE = 0.0170, 
MSE = 0.00029, and MAE = 0.0125, while Bi-LSTM achieved R² = 0.9733, RMSE = 0.0217, MSE = 0.00047, and MAE = 0.0168, 
outperforming the comparison models. LiR is a lightweight and computationally efficient model, and Bi-LSTM is successful at 
capturing the time dynamics, and the framework is capable of scaling to real-time. This form of predictive solution facilitates 
proactive allocation of resources, minimizes over-providing of resources as well and enhances the dynamic cloud environments' 
cost-effectiveness. However, in the future, prediction will be extended to other resources, such as memory, network, and GPU, to 
allow managing multiple resources holistically. Further improvements will consider adaptive ensemble procedures that 
incorporate both statistical and DL algorithms and incorporate reinforcement learning to make completely autonomous scaling 
choices. Scalability, resilience, and practical applicability is going to be tested in different types of production-quality cloud 
structures and deployed in real time in order to provide a solid baseline of intelligent, self-adaptive cloud resource management 
and optimization. 
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