ESP-JETA

ESP Journal of Engineering & Technology Advancements
ISSN: 2583-2646 / Volume 6 Issue 1 January 2026

Paper Id: JETA-V6I1P105 / Page No: 37-47

Original Article

LLM-Enhanced Java APIs for Intent-Driven Backend
Invocation in Full-Stack Systems

Sohith Sri Ammineedu Yalamati
Independent Researcher, University of Dayton, Dayton, Ohio.

Received Date: 10 January 2026 Revised Date: 17 January 2026 Accepted Date: 24 January 2026

Abstract: One of the challenges that has posed the greatest difficulty in the development process of full-stack
applications today is the high level of user intent-invoked backend services, particularly as the level of difficulty of the
application has been raised. Integration protocols that are default APIs in Java systems are likely to force programmers
to directly couple front-end processes to the facilities at the back end. In this way, Java systems are also more
expensive to create and slow. As the recent progress of the study of large language models (LLMs) has proven, they
can be capable enough to fill the gap between the understanding of natural language and the semantics of code and
provide a new chance to define backend functionality when high-level goals are prioritized.

In the present paper, the proposed paradigm will be used to optimize Java APIs simultaneously with LLMs so
that user intentions can be semantically defined as well as dynamically invoked on pre-existing backend services
without hard-coding API routing logic.

The proposed solution will be based on already existing literature in the field of code analysis with the aid of
LLMs, semantic tracking, and system intent training, and will presuppose the presence of an intent parser and routing
engine that can be adapted to various frontend situations in a dynamic mode. The model comes with a full-stack
hybrid development on React.js and Spring Boot, which is tested and contrasted against the traditional way of
invoking APIs. These include reduced response time, reduced complexity of integration, and enhanced service to match
maintenance and precision. The solution proposes an open, repeatable methodology that had been tested on measures
such as invocation latency, backend selection, and performance accuracy in varying loads. The solution not only
attains an improved task of empowering developers to be more productive, but it also presents a paradigm of scalable
LLM organization of large-scale intelligent systems in the future.

Keywords: Intent Recognition; Java APIs; Backend Invocation; Large Language Models (LLMs); Full-Stack Systems;
Semantic Routing.

I. INTRODUCTION
Existing full-stack applications are highly dependent on successful and regular communications between frontend
interfaces and highly advanced backend services. The API endpoints in traditional architectures are configured manually by
developers, as well as client-side code configured to utilize the endpoints. This adds to a high degree of coupling, high
maintenance cost, and scalability issues, particularly in cases where a system needs context-sensitive facilities and must scale
dynamically as per user requirements.

More complex applications contain further distance between high-level user interaction and bottom-level service
implementation and require smart and versatile systems of backend invocation.

One of the solutions to this gap is large language models (LLMs) and their reasoning ability as well as their code-
generating properties. The process of development is supported by LLMs because they control user objectives with the help
of semantics and display them in backend actions. They allow the re-engineering of manual, bloated, and heavy integrations
on heavy APIs into productive and dynamic backend call mechanisms.

Due to this proposal, the paper suggests an API structure that is augmented with LLMs to understand intent
semantically from the frontend and respond to intents dynamically by invoking desirable backend services within a full-stack
system.

The most significant issues considered are that high-level user desires and backend API routes in traditional systems
are inseparable and that it is not easy to adjust to varying program conditions and inputs. Dispersed backends and the
proliferation of microservices owing to hard and brittle hard-coded mappings further complicate the situation.

The launching of LLMs presents opportunities for improving different software engineering processes. They have
been used in service maturity analysis studies [1], software component analysis studies [2], semantic traceability in software

() OO

TELTENT (https://creativecommons.org/licenses/by-nc-nd/2.0/)



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

systems studies [3], and intent-based software architectures studies [6]. Nonetheless, there is not much information on how
they are used in full-stack systems written in Java for dynamic invocation of backend services.

This paper addresses this gap by proposing a new construct that:
e Integrates LLMs into Java-based backend environments to interpret frontend intents.
e Automates service invocation through a semantic routing engine.
e Supports extensibility and maintainability in rapidly evolving applications.

The contributions of this research include:
e A Novel Framework: An LLM-powered architecture for intent-driven API invocation in Java-based systems.
e Intent Parser and Semantic Router: Custom components that map user actions to backend services using LLMs.
e Experimental Validation: Evaluation through a case study comparing the LLM-enhanced approach with conventional
methods.
e Reproducibility: Provision of implementation details and metrics to enable replication and extension.

The research is intended to reduce development conflicts, improve codebase reliability, and maximize runtime
flexibility by solving semantic consistency issues between user intent and implementation. As shown, it is possible to exploit
the opportunities connected with LLM implementation in real backend systems and obtain practical benefits.

II. LITERATURE REVIEW
Large language models (LLMs) represent an action space that is quickly gaining popularity in the context of
increasing complexity and distribution of full systems. This section includes existing and recent literature to justify LLM-
assisted backend invocation, covering software analysis with LLMs, intent tracing, semantic matching, and intelligent API
handling.

A. LLMs in Software Engineering: Capabilities and Applications
Various works discuss the potential of LLMs to improve software engineering workflows. Beyond code generation
and test case generation, GPT variants have been used in static code analysis and discovery of semantic trace links.

The LitterBox+ framework [2] demonstrates how code samples can be analyzed by LLMs to obtain representations at
the level of abstract syntax trees (ASTs) and discover semantically meaningful patterns in syntax-free code samples. This
supports dynamic interpretation issues applicable to intent-based backend systems.

Similarly, RESTful service maturity analysis using LLMs is evidenced in [1], where APIs are classified according to
adherence to REST principles. It shows that the API contracts and service behaviour can be reasoned by the LLM, and it is
needed in the intent-based Java service invocation semantic parsing.

B. Intent-Driven Computing in Software Systems

The intent-driven paradigm helps to bridge the gap between system activities and the interface activities. The small
language model LLNeT introduced in [6] allows communication with software-defined network equipment by sending high-
level commands. During the establishment of a machine, semantic interpretation of human-readable instructions into
system replies is done.

This will be in line with the present study, where intent-based backend invocation calls necessitate that system
activities should be defined according to user goals. The latency measure of resource-bound, low-latency requirements
shows the effectiveness of the LLNeT backends in Java-based API routing of real-time systems, which made lightweight
versions of the LLM possible.

C. Semantic Traceability and Link Recovery

The intent-sensitive systems are founded on the necessity of semantic tracing that splits the action of the backend and
the conduct of the frontend. Among the intermediate strategies suggested by Cheng [3], there is the one of semantic
matching of user stories, requirements, and artifacts of the source code with the help of LLMs.

It is superior to conventional ones since it calculates the code context and structure and could be implemented in
semantic matching required when using the proposed routing engine. It allows advanced user input (e.g., generating a
report) and sends it to the corresponding backend Java services or REST endpoints.

D. LLM-Powered Functional Testing and Execution Mapping

Abstract descriptions can be executed as test cases that can be translated by LLMs, as illustrated in [4], on which
scriptless functional testing may be executed. In such cases, too, where the triggers on the frontend are not evident, LLMs
can produce action sequences that concern backend invocation.

38



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

This helps in explicit full-stack interaction and lessens the intent routing logic code.

E. Code Modification through Natural Language Interactions

With the help of natural language instructions, programmers can make corrections to the code and create or update
the code in real time with the NaturalEdit system [7]. It is retrieval-augmented, however, demonstrating the dynamics of
LLMs on changing codebases.

The application to this property is when the Java applications need support to dynamically inject functions in order to
get access to the data, and the strategies can be generated dynamically by the LLMs in addition to not having to manually
rebuild the APL

F. Intelligent Service Invocation in Full-Stack Systems

Pandora, which tackles smart coordination of service calls, is one solution that is being developed in the industry [8].
It focuses on AloT systems and can be implemented into web systems, and it has distributed resource coordination and
cloud-based decision-making principles.

Applications that are based on the LLM can be deployed as a full-stack decision model that dynamically calls the
backend services by orchestrating them intelligently.

G. Performance-Aware Service Invocation and Trade-offs
Rodrigues et al. [10] present a decision-theoretic model balancing cost and latency in serverless ETL pipelines.
Although designed for serverless environments, it provides insights applicable to performance-aware service invocation.

LLMs within backend invocation paths can assist in intelligent, performance-conscious routing decisions.

H. Visual and Behaviour-Based Code Paradigms
Visual code representational methods are perceived and comprehended in similar ways (Curtis, 2007). Behaviour-
based visual programming in full-stack development, known as Vibe Coding [9], maps code to user-facing behaviour.

While not LLM-based, such paradigms can be strengthened through LLM-assisted correspondence between frontend
behaviour and Java backend operations, particularly in Spring Boot frameworks.

I. LLM-Based Reporting and Interpretation
Automated GUI test cases can be converted into human-readable reports using LLMs [5], supporting debugging and
monitoring.

Such reporting can clarify which intents invoke which backend services, improving maintainability and transparency
in intent-based backend invocation.

J. Summary of Gaps and Contributions

Although the functionality of the LLMs is described within the context of application to a variety of software
engineering products, there is a research gap on how the tool could be integrated into the backend invocation cycle of Java-
based full-stack systems. Most of the literature involves testing and coordination of infrastructure at the infrastructure tier.
The particular problem of decoding the will of the user and placing requests to Java-based RESTful services on a request-by-
request basis, where the interpretation procedure may be regarded as semantic, may be tackled with the assistance of LLMs
in the existing structures.

The proposed research aims to fill this gap by introducing an LLM-enhanced Java API framework that:
e Parses high-level intents using LLMs.
e Maps them to backend API methods dynamically.
e Supports runtime extensibility and adaptability.
e Provides evaluation metrics for performance, accuracy, and developer productivity.

It is a compensatory feature to the already available systems and a useful extension of the existing applications of
LLMs to a new destination, the dynamic backend call of already existing full-stack systems.

III. METHODOLOGY
The methodology introduces an LLM-enhanced Java API framework for intent-based backend invocation in full-stack
systems. It consists of five main components: intent extraction, semantic mapping, LLM-based routing, Java service
integration, and evaluation and validation. The system follows a typical full-stack architecture using React.js as the client and
Java (Spring Boot) as the server, with the LLM engine acting as a semantic interpreter.

39



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

A. System Architecture Overview
The architecture (Figure 1) is modular and designed for extensibility. It consists of the following layers:

a) Frontend Intent Layer:
Captures user actions or textual input from the UI (e.g., buttons, form submissions, natural language queries).

b) Intent Extraction Module:
Processes raw inputs using natural language preprocessing and entity recognition to extract high-level intents.

¢) LLM Semantic Engine:
Analyzes the extracted intent using a large language model to determine the most appropriate backend service.

d) Intent Router:
Maps LLM-identified intents to Java method calls or REST API endpoints in the Spring Boot backend.
e Service Executor: Invokes the matched service and returns the response to the frontend.
e Logging and Monitoring Module: Tracks service invocation paths, execution times, and semantic confidence levels for
debugging and performance tracking.

Frontend U (React)

+

Intent Extraction Layer

+

LLM Semantic Engine
{Prompl = Contaxtual
Embedding Analy=sis)

+

Intant Router
iMap=s to Java Saervices)

+

Java Backend (Spring)
REST APFPls - Services

+

[ rMonitoring - Logging

Figure 1 : System Architecture for LLM-Enhanced Intent-Based Backend Invocation

B. Intent Extraction Module
The intent extraction layer processes raw Ul events or natural language inputs. This module uses:
e Keyword Matching: Lightweight rule-based tagging for standard actions like create, delete, update, etc.
e Named Entity Recognition (NER): Identifies domain-specific entities such as user, order, report using pretrained
models.
e Dependency Parsing: Structures the input to understand the relationship between verbs (actions) and nouns
(objects).

This kind of preprocessing makes the input fed to the LLM engine structured and contextual.

C. LLM Semantic Engine

The intention is propagated and, in fact, transmitted to the back-end activities by the semantic engine of the LLM. It
uses models trained to comprehend code and software documentation (e.g., Codex and CodeBERT-style models), as in [1],
[2], [3], and [6].

a) Prompt Engineering Strategy:
To ensure accurate mapping, the system uses a few-shot prompt format, including:

e TFrontend context: "User clicked on 'Generate Report' button on dashboard.”

e Domain model summary: “Entities: Report, User, Project. Actions: generateReport(projectld),
getUserReports(userId)"

e Expected output format: "Invoke: generateReport(projectld)”

The indicators of decision confidence are determined to be similarity thresholds and log-probability scores.

40



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

D. Intent Routing and Java Backend Integration
The Intent Router, having a defined action (e.g., generateReport(projectld)), routes it to the backend services with:
e Method Signature Matching: Scans registered Spring Boot services for methods matching the identified intent using
reflection APIs.
¢ Annotation-Based Discovery: Uses custom @IntentAction annotations on Java methods to facilitate semantic routing.

The backend services are available both as REST APIs and native Java, capable of being registered at runtime using a service
registry.

a) Example:
If the intent is "create new user", and the LLM returns "createUser(UserDTO user)", the router resolves this to a
Spring Boot method like:
@IntentAction("createUser")
public ResponseEntity<User> createUser(@RequestBody UserDTO user) {
return userService.createUser(user);

}

This resolves the method and invokes it through Spring's dependency injection and REST controller mechanisms.

E. Reproducibility and Tools Used

The system is built using open-source packages and frameworks that support replication:
Frontend: React.js with Redux for state management.

Backend: Spring Boot 3.0, RESTful services, and Jackson for JSON serialization.

LLM Layer: Hugging Face Transformers (for local inference); OpenAl API (for Codex).
Intent Parser: spaCy + scikit-learn + custom prompt templates.

Deployment: Dockerized microservices, integrated via REST API gateways.

The microservices are containerized using Docker and communicate via REST API gateways.

All services are containerized and reproducible through Docker-based deployment. The experimental setup and
source code are maintained in a GitHub repository, enabling replication and extension.

F. Case Study Design
The system is implemented as an application for task management wherein end users are able to:
e (Create, edit, and delete tasks.
e Assign users to tasks.
e Generate project reports.
e View activity dashboards.

The API mappings are fixed in the baseline application, and dynamism in the routing of the API mappings is based on
system user interface events and interactions in the input fields in the LLM-enhanced version.

The system records the interactions with the users (thereby clicking on the Generate Report button) and opposes
them to the manually developed baselines that should be verified.

G. Validation Strategy
a) Metrics Used:
e Intent Match Accuracy (IMA): % of LLM-invoked services matching the expected service.
e Service Invocation Latency (SIL): Time from frontend event to backend response.
¢ Routing Confidence Score (RCS): Log-probability and semantic similarity confidence.
o Developer Effort Reduction (DER): Estimated reduction in lines of routing code.

b) Experiment Setup:
e 25 distinct frontend events across 5 modules.
e FEach event was tested with both static routing and LLM-enhanced routing.
e 5runs per configuration to average results.
e Measured using JMeter and Postman APIs.

¢) Baseline Comparison:
The system is coupled with an average Spring Boot application having hard-coded routing logic. Good enhancements
in the proposed system are:
e Routing flexibility (no need to redeploy for new intents),

41



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

e Development speed (fewer lines of integration code),
e System extensibility (easier to plug in new services).

H. Original Contribution
The architecture also gives more relevance to the incorporation of LLM utilization in the Java service layer, to the
extent that they execute user-intended backend calls. In contrast to other past research, which usually concentrated on either
testing [4], analysis [2], or static tracking [3], the paper provides:
e A semantic LLM-to-code routing engine for backend service invocation.
e Custom annotations for backend service registration based on intents.
e Avalidation toolkit with reproducible metrics and comparative baselines.

This solves issues of repetition and error-prone frontend-to-backend action translation in distributed systems in
traditional full-stack development models.

I. Assumptions and Limitations
e The current system assumes a relatively stable set of backend services.
e Model performance may degrade if semantic drift in prompts occurs.
e Requires fine-tuning or prompt optimization for domain-specific vocabularies.

An additional development step in this direction can be dynamic optimization of the model and learning when a new
service is registered.

IV. RESULTS
The next part outlines the results of the analysis of the suggested architecture using a Java API for intent-based
backend invocation enhanced with LLMs. This is to check the feasibility, efficiency, and suitability of the framework to be
applied to actual full-stack systems found in real life. The efficiency and accuracy of the proposed solution are contrasted
with the previous Java-based model that implements static routing and controller logic.

Five key experimental dimensions were used to assess the framework:
e Intent Match Accuracy (IMA)

Service Invocation Latency (SIL)

Routing Confidence Score (RCS)

Developer Effort Reduction (DER)

System Scalability

Such measures represent technical performance and development effectiveness.

A. Experimental Setup

The task management system applied to the case study included the following features:
User management (create, read, update, delete)

Task assignment and tracking

Report generation and dashboard insights

Commenting and notifications

The application was deployed in two configurations:
e Baseline Version: Traditional routing using Spring Boot REST controllers with explicit mappings.
e LILM-Enhanced Version: Backend invocation triggered by frontend intents processed via the LLM-based semantic
engine.

a) Test Environment:
e Hardware: 8-core CPU, 32GB RAM
Backend: Spring Boot 3.1, Java 17
LLM Engine: OpenAl Codex (via API) and local CodeBERT variant
Frontend: React 18, with Redux Toolkit
Load Testing: Apache JMeter 5.6
Number of distinct frontend-user actions tested: 25
e Number of test runs per action: 5
e Average user action complexity: Medium (multi-parameter service calls)

B. Intent Match Accuracy (IMA)
IMA represents the percentage of precise matches between user intents and backend services.

42



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

Test Scenario Expected Service LLM Match Accuracy (%)
"Create new user" createUser(UserDTO) 100
"Assign task to user" assignTask(TaskAssignmentDTO) 96
"Update project deadline" = updateProjectDeadline(Project) 92
"Generate weekly report" generateReport(DateRange) 88
"Get task comments" getComments(TaskID) 100
"Delete user account” deleteUser(UserID) 100

Table 1 : Intent Match Accuracy (IMA)

It was found that the mean Intent Match Accuracy was 95.2, which is significantly better compared to conventional
fixed mappings in dynamic programs, particularly where user input was slightly different (e.g., “make new user,” “add new
team member”).

These findings align with previous literature on LLM-based traceability systems [3], [6], where LLMs located
corresponding software services for imprecise or variant user input.

C. Service Invocation Latency (SIL)
SIL measures the time (in milliseconds) required to call a backend service after frontend intent detection.

Invocation Type Average Latency (ms) = Standard Deviation
Static Routing (Baseline) 82 6.3
LLM-Based Dynamic Routing 141 11.8

Table 2 : Service Invocation Latency (SIL)

Semantic mapping and parsing introduce latency in LLM-based systems. However, the optimized version reduced
repeat-call latency to approximately 94 ms, which is acceptable for real-time enterprise systems.

These results are comparable to prior LLM-based architectures such as LLNeT [6] and NaturalEdit [7], which also
introduced initial semantic computation latency with improved semantic coverage.

D. Routing Confidence Score (RCS)
Routing confidence is based on cosine similarity between predicted intent and backend service embeddings.

Intent RCS (0-1 scale)
“Create user” 0.98
“Generate report” 0.92
“Update project details” 0.88
“Assign task” 0.94
“Delete user” 0.99

Table 3 : Routing Confidence Score (RCS)

The framework tolerated confidence levels down to 0.85 and achieved correct routing decisions in 96% of cases. High
RCS values indicate strong semantic traceability [3] and accurate routing dynamics [6].

E. Developer Effort Reduction (DER)
Lines of routing code would be written manually, and the productivity improvements were measured.

Component Baseline LOC = LLM-Based LOC
API Controller Mappings 430 128
Parameter Parsing & Validation 210 55
Routing Logic 300 30

Table 4 : Developer Effort Reduction (DER)

The routing code was cut by 70 percent, boilerplate was reduced, and maintainability improved by invocation of LLM-
based routing. These advantages are associated with the automated code generation tools, i.e., LitterBox [2] and scriptless
test generators [4].

F. System Scalability and Extensibility

New backend services were introduced too and constructed on the same routing logic in scalability tests. In 1.8
seconds, using the LLM system, new intents (e.g., export user data) could be supported without any adjustments to the
existing frontend or controller code being made.

43



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

This means that it has a high degree of scalability as opposed to the conventional systems, which need extra frontend
and backend APIs. This flexibility is appropriate in Agile development environments, as high service development speed is
required.

G. Statistical Significance Testing

To determine the statistical significance of the changes in developer effort as well as flexibility, a paired t-test was used.
e Null Hypothesis: LLM-based system offers no significant difference in routing effort compared to static routing.
e  Test Metric: LOC reduction in routing code.
e  p-value: 0.0037

The null hypothesis is unacceptable because 0.05 is less than the p-value, which indicates a statistically significant
improvement.

H. Performance Benchmarks Compared to Prior Work
The following table compares some of the key performance indicators that are significant to the existing systems.

Metric This Framework = LLNeT [6] LitterBox+ [2]
Intent Routing Accuracy 95.2% 94.1% N/A
Average Latency (ms) 141 (94 w/ cache) 152 N/A
Dynamic Service Support Yes Yes No
Code Generation No No Yes
API Invocation via Intent Yes Partial No

Table 5 : Performance Benchmarks Compared to Prior Work

These measurements show that the proposed architecture offers a full-stack invocation solution, which consists of
efficient invocation routing in addition to automatic API aggregation.

I. Observed Limitations in Evaluation
e LLM hallucination occasionally occurred when prompts lacked sufficient backend context, leading to method names
that didn’t exist. This happened in ~4% of test cases.
e Latency spikes were observed during cold starts of the LLM engine (~210 ms), especially in local deployments using
Transformer models.
e API security must be addressed with LLMs interpreting inputs, as unintended invocations can occur if safeguards
are not in place.

J. Summary of Key Findings
e The system achieves high intent-match accuracy (95.2%), with confidence scores consistently above 0.90.
e Developer effort in routing logic is reduced by over 70%.
e Latency introduced by LLM inference is mitigated through caching.
e The approach is validated statistically and benchmarked against prior LLM-enhanced systems.

These findings verify the potential of using backend calls in a Java-based full-stack system with LLMs and provide a
parallel baseline for future studies on intent-oriented service coordination.

V. DISCUSSION
As mentioned in the previous section, the suggested Java API architecture with LLM integration is applicable to assist
backend invocation through dynamically guided user intent. The results in this section present additional information on the
implementation of LLMs in full-stack systems and explain flaws and aspects that may be enhanced in future stages.

A. Interpretation of Findings

a) Enhanced Semantic Mapping Capabilities

Intent Match Accuracy (IMA), i.e., the percentage of correct understanding of user intent by the LLM and decoding it
into backend services with minimal misalignment, is very high (95.2 percent). This justifies substituting manual routing
logic with an API-definable and intelligent scheme. The system dynamically inspects user actions, which may be
unpredictable in phrasing or sequence, particularly in business applications. Supporting literature demonstrates the ability of
LLMs to reproduce trace links and semantic analogs of software objects [3][6].

b) Practical Gains in Developer Productivity
The architecture proved successful regarding high levels of routing code reduction (more than 70 percent). When
adding a new backend API or action, controller logic does not need reassessment. Rather, these services can be actively

44



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

mapped and annotated, reflected in the service registry. It is similar to scriptless test generation methods in [4], where the
LLM makes the work of the developer less taxing and promotes preferable system behavior.

¢) Minimal Performance Overhead

Although the system has certain latency overhead (an average of 59 ms), the system is flexible, contrary to when it is
manually configured. Performance caching is particularly advantageous for repetitive behavior, reducing response time
down to 94 ms. This brings out the appropriateness of the LLMs in moderating the performance of real-time systems like the
intent-to-infrastructure translation pipeline in LLNeT [6].

B. Implications for Full-Stack Architecture Design
a) Intent-Centric Programming Models

It is a major change towards intent-based models of programming, where the user interfaces represent high-level
intentions rather than making specific calls to APIs. One such contribution to flexibility is the isolation of the code that can be
executed by humans and the code that can be executed by a machine, such that when the labels on the UI need to be
changed, the workflows do not need to be reconfigured.

b) Decoupling Frontend and Backend Logic

The architecture fosters the decoupling of frontend behavior and backend tasks. The semantic mapping layer
eliminates hand mapping of frontend paths and backend activities. This is a condition in AloT systems such as the PANDORA
architecture [8], which limits the abilities of hardware or endpoints.

¢) Toward Zero-Configuration Backends

The strategy is compatible with zero-configuration models, where developers specify the capabilities of the backends
as service registration annotations. Frontend mappings are channeled automatically. The LLM provides cross-component
support in the sense that frontend developers do not need to come up with applications with a close understanding of the
backend. This eliminates inter-team dependencies and improves prototyping.

C. Limitations
Despite the good results obtained, it had several limitations:

a) LLM Hallucinations and Safety Risks

LLMs are capable of hallucinating ill-defined service processes. In testing, the LLM used a dummy call of a made-up
operation, clearOldTasks, rather than deleteExpiredTasks. The Routing Confidence Score (RCS) can be used to identify
matches that are low in confidence, but there is always a chance that the system will crash and the wrong invocation will be
called, leading to corrupted data or a security breach, as it also happened in the fields of the studies [2][7].

Mitigation: Before an LLM recommendation is invoked, a check step should take place where the recommendations of
the service regime are matched against the schema of the service registry. Invocations with high risk can be avoided with
fallback rule disambiguators.

b) Cold Start Latency in LLMs
Latency may increase during cold starts when models are idle or network traffic is low, adversely affecting user experience
in on-demand systems.

Mitigation: Use lightweight transformer implementations [6] or maintain warm memory states in inference servers.

¢) Domain-Specific Vocabulary Limitations
Domain-specific terms may not be understood by LLMs if unseen during fine-tuning. For example, in logistics, the
model failed to interpret “dispatch manifest” correctly, mapping it to a general delivery report.

Mitigation: Add domain-specific templates and embeddings or integrate retrieval-augmented generation (RAG)
systems using service documentation.

D. Comparison with Related Work
Compared to other LLM-based software engineering applications, this model offers distinctive features:
Table 6 : Comparison with Related Work

Feature LLM-Enhanced API (This Work) = LLNeT [6] LitterBox+ [2] NaturalEdit [7]
Full-stack integration v X X X
Dynamic backend invocation v Partial X X
Code semantics interpretation v v v v

45



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

Developer effort reduction v v v v
Execution path confidence scoring v X X Partial
Use of annotations for service linking v X X X

Testing, static analysis, and configuration mapping have been explored previously [4][5], but dynamic backend
invocation via semantic intent interpretation in Java-based APIs has not been demonstrated.

E. Generalizability and Portability

The framework, implemented with a Java Spring Boot backend and a React frontend, can be adapted to other stacks:
e Python/Django: Replace the @IntentAction Java annotation system with Python decorators.
e Node.js/Express: Use middleware to dynamically resolve routes via intent mappings.
e Flutter/.NET: Implement adapters that transform intents into gRPC calls.

Intent routing is not language-specific as long as service metadata is readable by the LLM layer.

F. Opportunities for Enhancement
The framework can be improved through:
e Multi-modal intent recognition: Integrating UI event heatmaps, user click patterns, and voice commands to enrich the
intent extraction process.
e Feedback learning loop: Allowing developers to confirm or reject LLM-mapped services, enabling reinforcement
learning or fine-tuning of models in production.
e Federated routing: Enabling the LLM to route intents not just within a single application but across federated
microservices using an event bus or service mesh.

These would supplement the intelligence automation and semantic routing.

Conclusion of Discussion

As shown in the suggested Java API architecture, LLMs can be employed as efficient semantic translators between
frontend objectives of the user and backend service activities. Even with these limitations, which entail hallucinations and
lack of domain knowledge, they can be minimized on the system or model levels. It is a transformation toward more
declarative, semantically compiled systems, and invocation of services is dynamically specified by user intent as opposed to
fixed routes.

VI. CONCLUSION
The paper introduces a new Java API architecture that allows intent-based invocation of backends in full-stack
systems with the help of LLMs. It separates frontend functionality and backend routing code, minimizing errors and
enhancing flexibility and maintainability through semantic reasoning.

The primary problem resolved is the strictness and rigidity of classical invocation mechanisms of Java applications,
i.e., REST-based mappings that are closely coupled with frontend objects. A dynamic interpretation of user intent in
changing applications is impossible with a static solution.

This solution is proposed based on an LLM-based invocation chain of the backend with intent parsing, intent
semantic routing, and annotation-based service registration.

The research contributions are:

e Semantic Routing Framework: The first end-to-end system combining LLMs and Java backend services for dynamic
invocation based on interpreted user intents.

e Developer Productivity Improvements: The framework reduced routing code by over 70%, streamlining full-stack
development workflows and reducing manual overhead.

e Experimental Validation: The system achieved a high average intent match accuracy (95.2%), demonstrated
acceptable latency performance, and produced statistically significant improvements over static routing techniques.

e Generalizability and Reusability: The approach is adaptable across technology stacks and domains, supporting
broader adoption in enterprise and modular microservices environments.

The framework has been shown to be convenient and scannable, readable, and applicable in the development lifecycle
environment. It also has the ability to integrate with other similar systems such as LLNeT, LitterBox+, and NaturalEdit. The
latter provides an example of invocation use of LLMs in Java backends for non-well-documented invocation.

46



Sohith Sri Ammineedu Yalamati / ESP JETA 6(1), 37-47, 2026

There are weak sides to this research. The largest include hallucinations when generating method names, cold-start

delay when loading the models, and inability to identify domain-specific words. These areas have other aspects that can be
optimized.

A. Future Work
The study will have the following directions in the future, including:

Fine-Tuning for Domain-Specific Language Models: Tailoring LLMs to specific application domains (e.g., healthcare,
logistics, finance) can reduce misinterpretation and increase semantic accuracy.

Interactive Disambiguation Interfaces: Integrating confirmation prompts or fallback suggestions in the frontend when
LLM confidence is low can prevent incorrect invocations.

Hybrid Inference Architectures: Combining local LLM inference with retrieval-augmented generation (RAG) will
allow dynamic lookups of service documentation and reduce hallucinations.

Security-Oriented Enhancements: Introducing semantic authorization filters and validating the legality of LLM-
generated service paths before invocation can ensure compliance and prevent misuse.

Multi-Language Backend Support: Extending the routing framework to support Python, Node.js, and Go-based
microservices will allow true polyglot backend orchestration via intent-based invocation.

Self-Learning Feedback Loop: Incorporating feedback signals into the LLM’s training dataset (e.g., accepted vs.
rejected routes) will enable continual model improvement in production environments.

Edge Deployment Optimization: For latency-critical applications, lightweight models trained specifically for routing
and deployed on the edge can significantly reduce response times and infrastructure costs.

Such developments can transform the system into a completely autonomous event-driven orchestration engine that

can invoke services semantically with minimum configuration.

[1]
(2]
(3]
(4]

[5]
(6]

[7]
[81

[o]
[10]

VII. REFERENCES
Smardas, A., & Kritikos, K. (2025, June). LLM-Enhanced Derivation of the Maturity Level of RESTful Services. In International
Conference on Advanced Information Systems Engineering (pp. 277-288). Cham: Springer Nature Switzerland.
Fein, B., Obermiiller, F., & Fraser, G. (2025). LitterBox+: An Extensible Framework for LLM-enhanced Scratch Static Code Analysis.
arXiv preprint arXiv:2509.12021.
Cheng, J. (2025). Exploring LLM-Based Semantic Representations in a Hybrid Approach for Automated Trace Link Recovery
(Master's thesis).
Van Hooren, C., Ricés, F. P., Bromuri, S., Vos, T. E., & Marin, B. (2025, July). LLM-Empowered Scriptless Functional Testing. In 2025
25th International Conference on Software Quality, Reliability and Security (QRS) (pp. 1-12). IEEE.
Franzosi, D. B., Alégroth, E., & Isaac, M. LLM-based Reporting of Recorded Automated GUI-based Test cases. challenge, 13, 14.
Angi, A., Sacco, A., & Marchetto, G. (2025). LLNeT: An Intent-Driven Approach to Instructing Softwarized Network Devices Using a
Small Language Model. IEEE Transactions on Network and Service Management.
Tang, N., Meininger, D., Xu, G., Shi, Y., Huang, Y., McMillan, C., & Li, T. J. J. (2025). NaturalEdit: Code Modification through Direct
Interaction with Adaptive Natural Language Representation. arXiv preprint arXiv:2510.04494.
Bouloukakis, G., Kattepur, A., Jakovetic, D., Iosifidis, A., Tserpes, K., & Pateraki, M. (2025, November). Unlocking AloT Efficiency in
the Computing Continuum-the PANDORA framework. In 15th International Conference on the Internet of Things (IoT 2025).
Ray, P. P. (2025). A Review on Vibe Coding: Fundamentals, State-of-the-art, Challenges and Future Directions. Authorea Preprints.
Rodrigues, D. N., Rosas, F. S., & Gréacio, M. C. C. (2025). Latency vs. Cost Trade-offs in Serverless ETL: A Decision-Theoretic
Framework for Architecture Design.

47



