ISSN : 2583-2646

Optimizing Scalability and Performance in Cloud Services: Strategies and Solutions

ESP Journal of Engineering & Technology Advancements
© 2021 by ESP JETA
Volume 1  Issue 2
Year of Publication : 2021
Authors : Saloni Sharma, Ritesh Chaturvedi
: 10.56472/25832646/ESP-V1I2P115

Citation:

Saloni Sharma, Ritesh Chaturvedi, 2021. "Optimizing Scalability and Performance in Cloud Services: Strategies and Solutions", ESP Journal of Engineering & Technology Advancements, 1(2): 116-133.

Abstract:

This research paper explores strategies and solutions for optimizing scalability and performance in cloud services. It examines various aspects of cloud architecture, scalability techniques, performance optimization strategies, and advanced technologies. The study delves into vertical and horizontal scaling, auto-scaling techniques, load balancing, caching mechanisms, and database optimization. Additionally, it investigates the role of containerization, serverless computing, and edge computing in enhancing cloud performance. Security considerations, monitoring tools, cost optimization strategies, and future trends are also discussed. The paper aims to provide a comprehensive overview of the challenges and solutions in cloud service optimization, offering valuable insights for cloud service providers and researchers in the field.

References:

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., & Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58. https://doi.org/10.1145/1721654.1721672
[2] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 25(6), 599-616. https://doi.org/10.1016/j.future.2008.12.001
[3] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience, 41(1), 23-50. https://doi.org/10.1002/spe.995
[4] Garg, S. K., Versteeg, S., & Buyya, R. (2013). A framework for ranking of cloud computing services. Future Generation Computer Systems, 29(4), 1012-1023. https://doi.org/10.1016/j.future.2012.06.006
[5] Jula, A., Sundararajan, E., & Othman, Z. (2014). Cloud computing service composition: A systematic literature review. Expert Systems with Applications, 41(8), 3809-3824. https://doi.org/10.1016/j.eswa.2013.12.017
[6] Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. NIST Special Publication, 800(145), 7. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
[7] Rashidi, B., & Sharifi, M. (2014). A survey on data management in cloud computing. International Journal of Computer Applications, 94(8), 14-19. https://doi.org/10.5120/16359-5771
[8] Rimal, B. P., Choi, E., & Lumb, I. (2009). A taxonomy and survey of cloud computing systems. In 2009 Fifth International Joint Conference on INC, IMS and IDC (pp. 44-51). IEEE. https://doi.org/10.1109/NCM.2009.218
[9] Singh, S., & Chana, I. (2016). QoS-aware autonomic resource management in cloud computing: a systematic review. ACM Computing Surveys (CSUR), 48(3), 1-46. https://doi.org/10.1145/2843889
[10] Varghese, B., & Buyya, R. (2018). Next generation cloud computing: New trends and research directions. Future Generation Computer Systems, 79, 849-861. https://doi.org/10.1016/j.future.2017.09.020
[11] Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds: towards a cloud definition. ACM SIGCOMM Computer Communication Review, 39(1), 50-55. https://doi.org/10.1145/1496091.1496100
[12] Wu, L., Garg, S. K., & Buyya, R. (2012). SLA-based resource allocation for software as a service provider (SaaS) in cloud computing environments. In 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (pp. 195-204). IEEE. https://doi.org/10.1109/CCGrid.2011.51
[13] Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75-86. https://doi.org/10.1016/j.rcim.2011.07.002
[14] Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1), 7-18. https://doi.org/10.1007/s13174-010-0007-6
[15] Zhao, W., Peng, Y., Xie, F., & Dai, Z. (2012). Modeling and simulation of cloud computing: A review. In 2012 IEEE Asia Pacific Cloud Computing Congress (APCloudCC) (pp. 20-24). IEEE. https://doi.org/10.1109/APCloudCC.2012.6486505
[16] Ashok: "Choppadandi, A., Kaur, J.,Chenchala, P. K., Nakra, V., & Pandian, P. K. K. G. (2020). Automating ERP Applications for Taxation Compliance using Machine Learning at SAP Labs. International Journal of Computer Science and Mobile Computing, 9(12), 103-112. https://doi.org/10.47760/ijcsmc.2020.v09i12.014
[17] Chenchala, P. K., Choppadandi, A., Kaur, J., Nakra, V., & Pandian, P. K. G. (2020). Predictive Maintenance and Resource Optimization in Inventory Identification Tool Using ML. International Journal of Open Publication and Exploration, 8(2), 43-50. https://ijope.com/index.php/home/article/view/127
[18] Kaur, J., Choppadandi, A., Chenchala, P. K., Nakra, V., & Pandian, P. K. G. (2019). AI Applications in Smart Cities: Experiences from Deploying ML Algorithms for Urban Planning and Resource Optimization. Tuijin Jishu/Journal of Propulsion Technology, 40(4), 50-56.
[19] Case Studies on Improving User Interaction and Satisfaction using AI-Enabled Chatbots for Customer Service . (2019). International Journal of Transcontinental Discoveries, ISSN: 3006-628X, 6(1), 29-34. https://internationaljournals.org/index.php/ijtd/article/view/98
[20] Choppadandi, A., Kaur, J., Chenchala, P. K., Kanungo, S., & Pandian, P. K. K. G. (2019). AI-Driven Customer Relationship Management in PK Salon Management System. International Journal of Open Publication and Exploration, 7(2), 28-35. https://ijope.com/index.php/home/article/view/128
[21] Ashok Choppadandi, Jagbir Kaur, Pradeep Kumar Chenchala, Akshay Agarwal, Varun Nakra, Pandi Kirupa Gopalakrishna Pandian, 2021. "Anomaly Detection in Cybersecurity: Leveraging Machine Learning Algorithms" ESP Journal of Engineering & Technology Advancements 1(2): 34-41.
[22] Ashok Choppadandi et al, International Journal of Computer Science and Mobile Computing, Vol.9 Issue.12, December- 2020, pg. 103-112. ( Google scholar indexed)
[23] Choppadandi, A., Kaur, J., Chenchala, P. K., Nakra, V., & Pandian, P. K. K. G. (2020). Automating ERP Applications for Taxation Compliance using Machine Learning at SAP Labs. International Journal of Computer Science and Mobile Computing, 9(12), 103-112. https://doi.org/10.47760/ijcsmc.2020.v09i12.014
[24] Chenchala, P. K., Choppadandi, A., Kaur, J., Nakra, V., & Pandian, P. K. G. (2020). Predictive Maintenance and Resource Optimization in Inventory Identification Tool Using ML. International Journal of Open Publication and Exploration, 8(2), 43-50. https://ijope.com/index.php/home/article/view/127
[25] AI-Driven Customer Relationship Management in PK Salon Management System. (2019). International Journal of Open Publication and Exploration, ISSN: 3006-2853, 7(2), 28-35. https://ijope.com/index.php/home/article/view/128
[26] Narukulla, Narendra, Joel Lopes, Venudhar Rao Hajari, Nitin Prasad, and Hemanth Swamy. "Real-Time Data Processing and Predictive Analytics Using Cloud-Based Machine Learning." Tuijin Jishu/Journal of Propulsion Technology 42, no. 4 (2021): 91-102.
[27] Big Data Analytics using Machine Learning Techniques on Cloud Platforms. (2019). International Journal of Business Management and Visuals, ISSN: 3006-2705, 2(2), 54-58. https://ijbmv.com/index.php/home/article/view/76
[28] Shah, J., Prasad, N., Narukulla, N., Hajari, V. R., & Paripati, L. (2019). Big Data Analytics using Machine Learning Techniques on Cloud Platforms. International Journal of Business Management and Visuals, 2(2), 54-58. https://ijbmv.com/index.php/home/article/view/76
[29] Big Data Analytics using Machine Learning Techniques on Cloud Platforms. (2019). International Journal of Business Management and Visuals, ISSN: 3006-2705, 2(2), 54-58. https://ijbmv.com/index.php/home/article/view/76
[30] Fadnavis, N. S., Patil, G. B., Padyana, U. K., Rai, H. P., & Ogeti, P. (2021). Optimizing scalability and performance in cloud services: Strategies and solutions. International Journal on Recent and Innovation Trends in Computing and Communication, 9(2), 14-23. Retrieved from http://www.ijritcc.org
[31] Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2021). Navigating regulatory requirements for complex dosage forms: Insights from topical, parenteral, and ophthalmic products. NeuroQuantology, 19(12), 971-994. https://doi.org/10.48047/nq.2021.19.12.NQ21307
[32] Fadnavis, N. S., Patil, G. B., Padyana, U. K., Rai, H. P., & Ogeti, P. (2020). Machine learning applications in climate modeling and weather forecasting. NeuroQuantology, 18(6), 135-145. https://doi.org/10.48047/nq.2020.18.6.NQ20194.
[33] Tilala, M., & Chawda, A. D. (2020). Evaluation of compliance requirements for annual reports in pharmaceutical industries. NeuroQuantology, 18(11), 27.
[34] Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2019). Investigating the use of natural language processing (NLP) techniques in automating the extraction of regulatory requirements from unstructured data sources. Annals of Pharma Research, 7(5),
[35] Shah, J., Prasad, N., Narukulla, N., Hajari, V. R., & Paripati, L. (2020). AI-driven data governance framework for cloud-based data analytics. Webology: International Peer-Reviewed Journal, 17(2), 1551-1561.
[36] Venudhar Rao Hajari et al, International Journal of Computer Science and Mobile Computing, Vol.9 Issue.11, November- 2020, pg. 118-131
[37] Shah, J., Narukulla, N., Hajari, V. R., Paripati, L., & Prasad, N. (2021). Scalable machine learning infrastructure on cloud for large-scale data processing. Tuijin Jishu/Journal of Propulsion Technology, 42(2), 45-53.
[38] Narukulla, N., Hajari, V. R., Paripati, L., Prasad, N., & Shah, J. (2021). Blockchain-enabled data analytics for ensuring data integrity and trust in AI systems. International Journal of Computer Science and Engineering (IJCSE), 10(2), 27-37.
[39] Preyaa Atri, "Enhancing Big Data Interoperability: Automating Schema Expansion from Parquet to BigQuery", International Journal of Science and Research (IJSR), Volume 8 Issue 4, April 2019, pp. 2000-2002, https://www.ijsr.net/getabstract.php?paperid=SR24522144712
[40] Preyaa Atri. (2021). Efficiently Handling Streaming JSON Data: A Novel Library for GCS-to-BigQuery Ingestion. European Journal of Advances in Engineering and Technology, 8(10), 96–99. https://doi.org/10.5281/zenodo.11408124
[41] Ayyalasomayajula, M. M. T., Chintala, S., & Sailaja, A. (2019). A Cost-Effective Analysis of Machine Learning Workloads in Public Clouds: Is AutoML Always Worth Using? International Journal of Computer Science Trends and Technology (IJCST), 7(5), 107–115.
[42] Aparna Bhat, “Comparison of Clustering Algorithms and Clustering Protocols in Heterogeneous Wireless Sensor Networks: A Survey,” 2014 INTERNATIONAL JOURNAL OF SCIENTIFIC PROGRESS AND RESEARCH (IJSPR)-ISSN : 2349-4689 Volume 04- NO.1, 2014.
[43] Preyaa Atri, "Optimizing Financial Services Through Advanced Data Engineering: A Framework for Enhanced Efficiency and Customer Satisfaction", International Journal of Science and Research (IJSR), Volume 7 Issue 12, December 2018, pp. 1593-1596, https://www.ijsr.net/getabstract.php?paperid=SR24422184930
[44] Aparna K Bhat, Rajeshwari Hegde, 2014. “Comprehensive Analysis Of Acoustic Echo Cancellation Algorithms On DSP Processor”, International Journal of Advance Computational Engineering and Networking (IJACEN), volume 2, Issue 9, pp.6-11.
[45] Chintala, S. ., & Ayyalasomayajula, M. M. T. . (2019). Optimizing Predictive Accuracy With Gradient Boosted Trees In Financial Forecasting. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 10(3), 1710–1721. https://doi.org/10.61841/turcomat.v10i3.14707
[46] Ayyalasomayajula, M., & Chintala, S. (2020). Fast Parallelizable Cassava Plant Disease Detection using Ensemble Learning with Fine Tuned AmoebaNet and ResNeXt-101. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 3013–3023.
[47] Preyaa Atri, "Unlocking Data Potential: The GCS XML CSV Transformer for Enhanced Accessibility in Google Cloud", International Journal of Science and Research (IJSR), Volume 8 Issue 10, October 2019, pp. 1870-1871, https://www.ijsr.net/getabstract.php?paperid=SR24608145221
[48] Vishwanath Gojanur , Aparna Bhat, “Wireless Personal Health Monitoring System”, IJETCAS:International Journal of Emerging Technologies in Computational and Applied Sciences,eISSN: 2279-0055,pISSN: 2279-0047, 2014.

Keywords:

Cloud Services, Scalability, Performance Optimization, Auto-Scaling, Load Balancing, Containerization, Serverless Computing, Edge Computing, Cloud Security, Performance Monitoring.